Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

一张照片,为深度学习巨头们定制人像图片

图片

主题驱动的文本到图像生成,通常需要在多张包含该主题(如人物、风格)的数据集上进行训练,这类方法中的代表工作包括 DreamBooth、Textual Inversion、LoRAs 等,但这类方案因为需要更新整个网络或较长时间的定制化训练,往往无法很有效地兼容社区已有的模型,并无法在真实场景中快速且低成本应用。而目前基于单张图片特征进行嵌入的方法(FaceStudio、PhotoMaker、IP-Adapter),要么需要对文生图模型的全参数训练或 PEFT 微调,影响原本模型的泛化性能,缺乏与社区预训练模型的兼容性,要么无法保持高保真度。

为了解决这些问题,来自 InstantX 团队的研究人员提出了 InstantID,该模型不训练文生图模型的 UNet 部分,仅训练可插拔模块,在推理过程中无需 test-time tuning,在几乎不影响文本控制能力的情况下,实现高保真 ID 保持。

图片

  • 论文标题:InstantID: Zero-shot Identity-Preserving Generation in Seconds

  • 论文地址:https://arxiv.org/abs/2401.07519

  • 代码地址:https://github.com/InstantID/InstantID
  • 项目地址:https://instantid.github.io

InstantID 是一个高效的、轻量级、可插拔的适配器,赋予预训练的文本到图像扩散模型以 ID 保存的能力。作者通过(1)将弱对齐的 CLIP 特征替换为强语义的人脸特征;(2)人脸图像的特征在 Cross-Attention 中作为 Image Prompt 嵌入;(3)提出 IdentityNet 来对人脸施加强语义和弱空间的条件控制,从而增强 ID 的保真度以及文本的控制力。

下图为利用 InstantID 进行风格化的结果,输入仅为最左侧的人物图像。

图片

文章的主要贡献如下:

(1) InstantID 作为一种全新的 ID 保留方法,有效弥补了训练效率与 ID 保真度之间的差距。
(2)InstantID 是可插拔的,与目前社区内文生图基础模型、LoRAs、ControlNets 等完全兼容,可以零成本地在推理过程中保持人物 ID 属性。此外,InstantID 保持了良好的文本编辑能力,使 ID 能够丝滑地嵌入到各种风格当中。
(3)实验结果表明,InstantID 不仅超越目前基于单张图片特征进行嵌入的方法(IP-Adapter-FaceID),还与 ROOP、LoRAs 等方法在特定场景下不分伯仲。它卓越的性能和效率激发了其在一系列实际应用中的巨大潜力,例如新颖的视图合成、ID 插值、多 ID 和多风格合成等。

图片

方法介绍

仅给定一张参考 ID 图像,InstantID 的目标是从单个参考 ID 图像生成具有各种姿势或风格的定制图像,同时保证高保真度。上图概述了我们的方法。它包含三个关键组成部分:(1) 鲁棒的人脸表征;(2) 具有解耦功能的交叉注意力,支持 Image Prompt;(3) IdentityNet,引入额外的弱空间控制对参考面部图像的复杂特征进行编码。

1. 由于 CLIP 只提供了弱语义表征,无法在人脸等强语义场景下直接应用,考虑了人脸识别领域已经相当成熟,所以我们采用预训练的人脸编码器来提取人脸特征。在本文中,我们使用来自 insightface 提供的 antelopev2 模型来提取人脸特征。

2. 如先前方法所述,预训练的文本到图像扩散模型中的图像提示功能能够增强了文本提示,特别是对于难以用文字描述的内容,因此,我们采用和 IP-Adapter 一致的具有解耦功能的交叉注意力机制,但差别在于我们使用人脸特征,而非 CLIP 表征。

3. 引入 IdentityNet 来对人脸图像进行编码。在实现中,IdentityNet 采用与 ControlNet 一致的残差结构,从而保持原始模型的兼容性。在 IdentityNet 中,主要有两个对于原版 ControlNet 的修改:1)只使用五个面部关键点,而不是细粒度的 OpenPose 面部关键点 (两个用于眼睛,一个用于鼻子,两个用于嘴巴)用于条件输入。2)我们消除文本提示并使用 ID 嵌入作为条件加入到 ControlNet 中的交叉注意力层。

实验结果

作者首先展示了方法的稳健性、可编辑性和兼容性,分别对应在空文本、编辑文本、额外使用 ControlNets 下的生成效果。可以看到,InstantID 仍然保持了较好的文本控制能力,同时与开源的 ControlNet 模型兼容。

图片

同时该方法也支持多张图注入,来进一步提升效果。

图片

InstantID 与目前社区内主流的三类方法进行对比。

(1)基于单图特征注入(IP-Adapter 与 PhotoMaker)。相比之下,IP-Adapter 具有可插拔性,兼容社区模型,且其 FaceID 版本的人脸保真度有明显提升,但是对于文本的控制能力出现明显退化;而近期新推出的 PhotoMaker,需要训练整个模型(虽然采用了 LoRA 的方式),风格退化问题减弱,但其人脸保真度未见明显提升,甚至不如 IP-Adapter-FaceID。而我们提出的 InstantID 兼顾了人脸保真度和文本控制能力。

图片

(2)基于微调的人物 LoRAs

图片

(3)非扩散模型的换脸模型 inswapper

图片

此外,InstantID 还支持了多视角生成、ID 插值、多 ID 生成,作为潜在应用场景。

(1)多视角生成

图片

(2)ID 插值

图片

(3)多 ID + 多风格的生成

图片

衍生应用玩法

基于高性能的人像注入和编辑能力,InstantID可以支持很多衍生应用玩法

(1)快速低门槛的真人写真

图片

(2)夸张五官人像定制

图片

(3)非人像混合定制

图片

产业InstantIDInstantX
相关数据
参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

人脸识别技术

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

注意力机制技术

我们可以粗略地把神经注意机制类比成一个可以专注于输入内容的某一子集(或特征)的神经网络. 注意力机制最早是由 DeepMind 为图像分类提出的,这让「神经网络在执行预测任务时可以更多关注输入中的相关部分,更少关注不相关的部分」。当解码器生成一个用于构成目标句子的词时,源句子中仅有少部分是相关的;因此,可以应用一个基于内容的注意力机制来根据源句子动态地生成一个(加权的)语境向量(context vector), 然后网络会根据这个语境向量而不是某个固定长度的向量来预测词。

插值技术

数学的数值分析领域中,内插或称插值(英语:interpolation)是一种通过已知的、离散的数据点,在范围内推求新数据点的过程或方法。求解科学和工程的问题时,通常有许多数据点借由采样、实验等方法获得,这些数据可能代表了有限个数值函数,其中自变量的值。而根据这些数据,我们往往希望得到一个连续的函数(也就是曲线);或者更密集的离散方程与已知数据互相吻合,这个过程叫做拟合。

图像生成技术

图像生成(合成)是从现有数据集生成新图像的任务。

文本到图像生成技术

文本到图像生成是从文本描述或标题生成图像的任务。

推荐文章
暂无评论
暂无评论~