Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降

Transformer 架构已经在现代机器学习领域得到了广泛的应用。注意力是 transformer 的一大核心组件,其中包含了一个 softmax,作用是产生 token 的一个概率分布。softmax 有较高的成本,因为其会执行指数计算和对序列长度求和,这会使得并行化难以执行。

Google DeepMind 想到了一个新思路:用某种不一定会输出概率分布的新方法替代 softmax 运算。他们还观察到:在用于视觉 Transformer 时,使用 ReLU 除以序列长度的注意力可以接近或匹敌传统的 softmax 注意力。

图片

论文:https://arxiv.org/abs/2309.08586

这一结果为并行化带来了新方案,因为 ReLU 注意力可以在序列长度维度上并行化,其所需的 gather 运算少于传统的注意力。

方法

  • 注意力

注意力的作用是通过一个两步式流程对 d 维的查询、键和值 {q_i, k_i, v_i} 进行变换。

在第一步,通过下式得到注意力权重 图片

图片

其中 ϕ 通常是 softmax。

下一步,使用这个注意力权重来计算输出图片 这篇论文探索了使用逐点式计算的方案来替代 ϕ。

  • ReLU 注意力

DeepMind 观察到,对于 1 式中的 ϕ = softmax,图片是一个较好的替代方案。他们将使用 图片的注意力称为 ReLU 注意力。

  • 已扩展的逐点式注意力

研究者也通过实验探索了更广泛的 图片 选择,其中 α ∈ [0, 1] 且 h ∈ {relu,relu² , gelu,softplus, identity,relu6,sigmoid}。

  • 序列长度扩展

他们还观察到,如果使用一个涉及序列长度 L 的项进行扩展,有助于实现高准确度。之前试图去除 softmax 的研究工作并未使用这种扩展方案。

在目前使用 softmax 注意力设计的 Transformer 中,有 图片 ,这意味着 图片 尽管这不太可能是一个必要条件,但 图片能确保在初始化时 图片 的复杂度是 图片 ,保留此条件可能会减少替换 softmax 时对更改其它超参数的需求。

在初始化的时候,q 和 k 的元素为 O (1),因此 图片 也将为 O (1)。ReLU 这样的激活函数维持在 O (1),因此需要因子图片才能使 图片 的复杂度为 图片

实验与结果

  • 主要结果

图 1 说明在 ImageNet-21k 训练方面,ReLU 注意力与 softmax 注意力的扩展趋势相当。X 轴展示了实验所需的内核计算总时间(小时)。ReLU 注意力的一大优势是能在序列长度维度上实现并行化,其所需的 gather 操作比 softmax 注意力更少。

图片

  • 序列长度扩展的效果

图 2 对比了序列长度扩展方法与其它多种替代 softmax 的逐点式方案的结果。具体来说,就是用 relu、relu²、gelu、softplus、identity 等方法替代 softmax。X 轴是 α。Y 轴则是 S/32、S/16 和 S/8 视觉 Transformer 模型的准确度。最佳结果通常是在 α 接近 1 时得到。由于没有明确的最佳非线性,所以他们在主要实验中使用了 ReLU,因为它速度更快。

图片

  • qk-layernorm 的效果

主要实验中使用了 qk-layernorm,在这其中查询和键会在计算注意力权重前被传递通过 LayerNorm。DeepMind 表示,默认使用 qk-layernorm 的原因是在扩展模型大小时有必要防止不稳定情况发生。图 3 展示了移除 qk-layernorm 的影响。这一结果表明 qk-layernorm 对这些模型的影响不大,但当模型规模变大时,情况可能会不一样。

图片

  • 添加门的效果

先前有移除 softmax 的研究采用了添加一个门控单元的做法,但这种方法无法随序列长度而扩展。具体来说,在门控注意力单元中,会有一个额外的投影产生输出,该输出是在输出投影之前通过逐元素的乘法组合得到的。图 4 探究了门的存在是否可消除对序列长度扩展的需求。总体而言,DeepMind 观察到,不管有没有门,通过序列长度扩展都可以得到最佳准确度。也要注意,对于使用 ReLU 的 S/8 模型,这种门控机制会将实验所需的核心时间增多大约 9.3%。

图片

工程Transformer
相关数据
DeepMind机构

DeepMind是一家英国的人工智能公司。公司创建于2010年,最初名称是DeepMind科技(DeepMind Technologies Limited),在2014年被谷歌收购。在2010年由杰米斯·哈萨比斯,谢恩·列格和穆斯塔法·苏莱曼成立创业公司。继AlphaGo之后,Google DeepMind首席执行官杰米斯·哈萨比斯表示将研究用人工智能与人类玩其他游戏,例如即时战略游戏《星际争霸II》(StarCraft II)。深度AI如果能直接使用在其他各种不同领域,除了未来能玩不同的游戏外,例如自动驾驶、投资顾问、音乐评论、甚至司法判决等等目前需要人脑才能处理的工作,基本上也可以直接使用相同的神经网上去学而习得与人类相同的思考力。

https://deepmind.com/
激活函数技术

在 计算网络中, 一个节点的激活函数定义了该节点在给定的输入或输入的集合下的输出。标准的计算机芯片电路可以看作是根据输入得到"开"(1)或"关"(0)输出的数字网络激活函数。这与神经网络中的线性感知机的行为类似。 一种函数(例如 ReLU 或 S 型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

概率分布技术

概率分布(probability distribution)或简称分布,是概率论的一个概念。广义地,它指称随机变量的概率性质--当我们说概率空间中的两个随机变量具有同样的分布(或同分布)时,我们是无法用概率来区别它们的。

超参数技术

在机器学习中,超参数是在学习过程开始之前设置其值的参数。 相反,其他参数的值是通过训练得出的。 不同的模型训练算法需要不同的超参数,一些简单的算法(如普通最小二乘回归)不需要。 给定这些超参数,训练算法从数据中学习参数。相同种类的机器学习模型可能需要不同的超参数来适应不同的数据模式,并且必须对其进行调整以便模型能够最优地解决机器学习问题。 在实际应用中一般需要对超参数进行优化,以找到一个超参数元组(tuple),由这些超参数元组形成一个最优化模型,该模型可以将在给定的独立数据上预定义的损失函数最小化。

查询技术

一般来说,查询是询问的一种形式。它在不同的学科里涵义有所不同。在信息检索领域,查询指的是数据库和信息系统对信息检索的精确要求

推荐文章
暂无评论
暂无评论~