Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

机器之心编辑部专栏

ICCV 2023 | 傅里叶算子高效Token Mixer:轻量级视觉网络新主干

来自微软亚洲研究院的研究人员发现对 Token 进行傅里叶变换数学上等价于用超大尺寸自适应卷积核进行 Token 融合,而前者的计算代价远低于后者。基于该核心发现,研究员设计了一种名为 Adaptive Fourier Filter(AFF)的轻量高效 Token Mixer,将 Token 融合的计算复杂度从 O (N^2) 降低到 O (N log N),并以此为基础算子构建了轻量级视觉神经网络主干 AFFNet。该主干网络能够以 5.5M 的模型参数量,在 ImageNet-1K 上实现 79.8% 的准确率。

1. 背景

近年来,基于 Transformer、Large-kernel CNN 和 MLP 三种视觉主干网络在广泛的 CV 任务中取得了显著的成功,这要归功于它们在全局范围内的高效信息融合能力。

现有的三大主流神经网络,即 Transformer、CNN 和 MLP,分别通过各自的方式实现全局范围的 Token 融合。其中,Transformer 网络中的自注意力机制将 Query-Key pairs 的相关性作为 Token 融合的权重。CNN 通过扩大 kernel 尺寸实现与 transformer 相近的性能。MLP 通过在所有令牌之间的全连接实现另一种强大的范式。所有这些方法都是有效的,但计算复杂度高 (O (N^2)),难以在存储和计算能力有限的设备上部署,限制了很多模型的应用范围。

2. AFF Token Mixer: 轻量、全局、自适应

为了解决计算昂贵的问题,研究人员构建了一种名为 Adaptive Fourier Filter(AFF)的高效全局 Token 融合算子。它通过傅里叶变换将 Token 集合变换到频域,同时在频域学习到一个内容自适应的滤波掩膜,对变换到频域空间中的 Token 集合进行自适应滤波操作。

论文《Adaptive Frequency Filters As Efficient Global Token Mixers》:
图片
链接:https://arxiv.org/abs/2307.14008

根据频域卷积定理,原始域中的卷积操作在数学上等价于对应的傅里叶域中的 Hadamard 乘积操作。这使得该工作所提出的 AFF Token Mixer 在数学上等价于使用一个空间分辨率和 Token 集合一样大小的动态卷积核在原始域中进行 Token 融合 (如下图右子图所示), 具有在全局范围内进行内容自适应 Token 融合的作用。

众所周知,动态卷积的计算开销大,大空间分辨率的动态卷积核的使用开销对于高效 / 轻量级网络设计似乎就更加不可接受。但是本文所提出的 AFF Token Mixer 却可以作为同时满足以上优点的低功耗等效实现,将复杂性从 O (N^2) 降低到 O (N log N),显著提高了计算效率。

图片

图 1:AFF 模块和 AFFNet 网络示意图。

3. AFFNet:轻量级视觉网络新主干

研究人员将 AFF Token Mixer 作为主要神经网络操作算子,构建了一个轻量级神经网络,称为 AFFNet。大量实验表明,AFF Token Mixer 在广泛的视觉任务中实现了优越的准确性和效率权衡,包括视觉语义识别和密集预测任务。

4. 实验结果

研究人员在视觉语义识别、分割、检测等多个视觉任务上对所提出的 AFF Token Mixer 和 AFFNet 进行评测,并将其和目前研究领域中最先进的轻量级视觉主干网络进行对比。实验结果表明,该工作提出的模型设计在广泛的视觉任务上均表现出色,验证了所提出的 AFF Token Mixer 作为新一代轻量高效的 Token 融合算子的潜力。

图片
图 2:ImageNet-1K 数据集上的 Acc-Param, Acc-FLOPs 曲线,与 SOTA 的对比。

图片

表 1:ImageNet-1K 数据集上和 SOTA 的对比

图片

表 2:下游任务(视觉检测和分割)和SOTA的对比。

5. 结论

此项研究成果从数学上证明了隐空间中的频域变换能起到全局自适应 Token 融合的作用,是神经网络中实现全局自适应 Token 融合的一种高效能低功耗的等效实现。为神经网络中 Token 融合算子的设计打开了新的研究思路,也为神经网络模型在存储和计算能力有限的边缘设备上的部署带来了新的发展空间。

理论傅里叶变换大尺寸自适应卷积核
相关数据
权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

自注意力技术

自注意力(Self-attention),有时也称为内部注意力,它是一种涉及单序列不同位置的注意力机制,并能计算序列的表征。自注意力在多种任务中都有非常成功的应用,例如阅读理解、摘要概括、文字蕴含和语句表征等。自注意力这种在序列内部执行 Attention 的方法可以视为搜索序列内部的隐藏关系,这种内部关系对于翻译以及序列任务的性能非常重要。

注意力机制技术

我们可以粗略地把神经注意机制类比成一个可以专注于输入内容的某一子集(或特征)的神经网络. 注意力机制最早是由 DeepMind 为图像分类提出的,这让「神经网络在执行预测任务时可以更多关注输入中的相关部分,更少关注不相关的部分」。当解码器生成一个用于构成目标句子的词时,源句子中仅有少部分是相关的;因此,可以应用一个基于内容的注意力机制来根据源句子动态地生成一个(加权的)语境向量(context vector), 然后网络会根据这个语境向量而不是某个固定长度的向量来预测词。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

傅里叶变换技术

傅里叶变换(法语:Transformation de Fourier、英语:Fourier transform)是一种线性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。

推荐文章
暂无评论
暂无评论~