Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

机器之心编辑部专栏

国内首次!山东大学全新点云法向估计算法荣获SIGGRAPH最佳论文奖

这是自 SIGGRAPH (NA) 设立最佳论文奖以来,国内科研团队首次以第一单位荣获该奖项。

图片

该论文的第一作者是山东大学硕士二年级学生徐瑞,指导教师是山东大学交叉研究中心的屠长河教授和辛士庆副教授。合作者还包括香港大学的博士生窦志扬、美国德州大学达拉斯分校的博士生王宁娜、青岛科技大学的陈双敏副教授、山东大学的江铭炎教授、美国德州大学达拉斯分校的郭小虎教授以及美国德州农工大学的王文平教授。

图片

论文项目主页:https://xrvitd.github.io/Projects/GCNO/index.html

代码:https://github.com/Xrvitd/GCNO

论文的研究主题是点云法线定向问题。考虑到传统方法未能充分利用形状全局先验(流形、水密、可定向),作者利用全局一致法向与规范卷绕数场(Winding Number Field)之间的强耦合关系,提出了一个光滑的优化函数,从而获取能够反映潜在形状的定向信息。
点云数据可以认为是一组落在某个可定向水密流形曲面上的采样点集。估算法向是三维重建任务的重要一步,并为很多几何处理任务提供必要的信息支持。具体地说,法向的估算又可细分为定向一致性问题和法向精确性问题。然而,原始点云可能存在各种瑕疵(噪声、稀疏、不均匀、缺失等),潜在形状可能非常复杂(薄板、细管、尖边尖角、高亏格),这进一步加剧了法向估算的难度。本论文观察到定向一致性问题和法向精确性问题不是两个独立的问题,因此将它们一并考虑,针对无法向点云直接恢复具有精确性和一致性的法向信息。
传统定向算法多是基于传播的范式,由近及远,层层向外传播。然而,这种过程式的算法存在 “一步错,步步错” 的先天缺陷。归根到底,如何充分利用形状全局先验,以克服点云数据存在的二义性,是解决该困难问题的关键。作者观察到正确的定向能够产生规范的卷绕数场(非 0 即 1),因而以 “编码了全局形状信息的卷绕数场” 为工具,提出了基于规范化卷绕数场的新思路。如图 1 所示,当点云的法线完全随机时,点云的卷绕数场几乎处处为零;而当点云的法线完全正确时,点云的卷绕数场非 0 即 1,且模型外部为 0,内部为 1。
图片
图 1. 左侧为随机法向产生的卷绕数场,右侧为正确法向产生的卷绕数场如图 2 所示,为了迫使卷绕数 “非 0 即 1”,作者使用物理学中的双势阱函数鼓励卷绕数向 0 或者 1 演化。同时,为了阻止全零卷绕数,本文在双势阱函数中添加了一个修正项,进一步提高取值为 1 的倾向性。其对应的函数是:
图片
图 2. 普通双势阱函数及修正后的函数图像作者观察到,尽管定向一致性问题和法向精确性问题分别反映了全局和局部几何结构,但它们之间存在关联。已有研究表明,空间 Voronoi 图能够描述局部几何结构,在法线准确估计方面具备优势。因此,本文首先求解三维空间中的 Voronoi 图,然后以 Voronoi 顶点作为观测点,定义法向的全局一致性和局部精确性。假设共有 M 个 Voronoi 顶点,那么卷绕数场的规范性可被描述为:
图片
图片
图片
图 3. 每个点的 Voronoi cell,上图为 Voronoi 顶点,下图为极点 (最远点)在采样比较稠密的情况下,每个采样点的 Voronoi cell 部分在内、部分在外。外部 Voronoi 顶点对应的卷绕数为 0,内部 Voronoi 顶点对应的卷绕数为 1。为了抑制 “全 0” 或者 “全 1” 的情况,确保潜在曲面将三维空间分为内外两部分,引入平衡项:
图片
如图 3 所示,对于 Voronoi cell 来说,有一个离站点最远的内部顶点和一个离站点最远的外部顶点,它们均称作极点。已有研究表明,极点为法线朝向的精确性提供了几何依据。因此,论文还引入一个对齐项,用于刻画法线的走向是否与极点所处的方位保持一致:
图片
图片
图 4. 迭代优化过程最终,一致性需求和精确性需求被描述为一个由三个能量项构成的目标函数,其最小值反映了一致性和精确性:
图片
其中 n 为点云的待求法向。作者严格地证明了该目标函数存在非平凡的最优解。优化过程如图 4 所示。即使对于薄板、细管等具有挑战性的模型,无论是随机法线初始化还是球面法线初始化,均能得到整齐的法线信息。
图片
图 5. 法向一致性结果对比 (红色点为预测错误)图片
图 6. 稀疏点云泊松重建结果本文对现有的法线估计算法进行了比较(图 5),并使用泊松重建(Poisson Reconstruction)进行了黑盒测试(图 6),充分表明了该方法的有效性。即使在稀疏、噪声、复杂(图 7)甚至只有线框(图 8)的模型上,该算法仍能获得高质量的法线信息和重建结果。
图片
图 7. 复杂模型重建结果图片
图 8. 线框点云法向估计及重建结果总结起来,本文提出了一种通过规范化卷绕场获得全局一致法线的方法。该方法以卷绕数场非 0 即 1 为基本要求,同时考虑了精确性(与 Voronoi 极点对齐)和内外可分性(0-1 平衡),将法线定向问题转化为一个最小化问题。本文对具有各种缺陷和挑战的点云进行了广泛实验,例如噪声、稀疏、缝隙、薄板和高度复杂的几何 / 拓扑结构,实验结果表明了该方法的优越性。该技术有望应用于逆向工程、智能制造、三维影像、无人驾驶、人机交互、数字城市、电影娱乐等领域。值得一提的是,论文相关视频还入选了 SIGGRAPH 2023 技术论文宣传片,突显了其重要性和创新性。
图片
山东大学交叉研究中心(Interdisciplinary Research Center, IRC)成立于 2013 年 9 月,重点关注视觉感知与交互相关领域新兴技术的发展与应用。自成立以来,中心面向国家在智能制造、虚拟现实增强现实、大数据可视化、智能机器人等方面的重大需求,建设计算机图形学、计算机视觉、可视化与可视分析三个方向。





理论SIGGRAPH最佳论文点云法向估计算法山东大学
相关数据
增强现实技术

增强现实,是指透过摄影机影像的位置及角度精算并加上图像分析技术,让屏幕上的虚拟世界能够与现实世界场景进行结合与互动的技术。这种技术于1990年提出。随着随身电子产品运算能力的提升,增强现实的用途也越来越广。

计算机图形技术

图像数据处理、计算机图像(英语:Computer Graphics)是指用计算机所创造的图形。更具体的说,就是在计算机上用专门的软件和硬件用来表现和控制图像数据。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

虚拟现实技术

虚拟现实,简称虚拟技术,也称虚拟环境,是利用电脑模拟产生一个三维空间的虚拟世界,提供用户关于视觉等感官的模拟,让用户感觉仿佛身历其境,可以及时、没有限制地观察三维空间内的事物。用户进行位置移动时,电脑可以立即进行复杂的运算,将精确的三维世界视频传回产生临场感。

逆向工程技术

逆向工程,又称反向工程,是一种技术过程,即对一项目标产品进行逆向分析及研究,从而演绎并得出该产品的处理流程、组织结构、功能性能规格等设计要素,以制作出功能相近,但又不完全一样的产品。逆向工程源于商业及军事领域中的硬件分析。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

目标函数技术

目标函数f(x)就是用设计变量来表示的所追求的目标形式,所以目标函数就是设计变量的函数,是一个标量。从工程意义讲,目标函数是系统的性能标准,比如,一个结构的最轻重量、最低造价、最合理形式;一件产品的最短生产时间、最小能量消耗;一个实验的最佳配方等等,建立目标函数的过程就是寻找设计变量与目标的关系的过程,目标函数和设计变量的关系可用曲线、曲面或超曲面表示。

规范化技术

规范化:将属性数据按比例缩放,使之落入一个小的特定区间,如-1.0 到1.0 或0.0 到1.0。 通过将属性数据按比例缩放,使之落入一个小的特定区间,如0.0到1.0,对属性规范化。对于距离度量分类算法,如涉及神经网络或诸如最临近分类和聚类的分类算法,规范化特别有用。如果使用神经网络后向传播算法进行分类挖掘,对于训练样本属性输入值规范化将有助于加快学习阶段的速度。对于基于距离的方法,规范化可以帮助防止具有较大初始值域的属性与具有较小初始值域的属相相比,权重过大。有许多数据规范化的方法,包括最小-最大规范化、z-score规范化和按小数定标规范化。

人机交互技术

人机交互,是一门研究系统与用户之间的交互关系的学问。系统可以是各种各样的机器,也可以是计算机化的系统和软件。人机交互界面通常是指用户可见的部分。用户通过人机交互界面与系统交流,并进行操作。小如收音机的播放按键,大至飞机上的仪表板、或是发电厂的控制室。

数据可视化技术

数据可视化被许多学科视为现代视觉传达的等价物。为了清晰有效地传递信息,数据可视化使用统计图形、图表、信息图和其他工具。数字数据可以使用点、线或条编码,以视觉传达定量消息。有效的可视化帮助用户对数据进行分析和推理。它使复杂的数据更容易理解和使用。用户可以根据特定的分析任务进行数据可视化,例如进行比较或理解因果关系,并且图形的设计原则(即,显示比较或显示因果关系)来进行可视化。表通常用于用户查找特定测量的地方,而各种类型的图表用于显示一个或多个变量的数据中的模式或关系。

三维重建技术

三维重建是指利用二维投影或影像恢复物体三维信息(形状等)的数学过程和计算机技术。

推荐文章
暂无评论
暂无评论~