Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

图与代码不一致,Transformer论文被发现错误,网友:早该被指出1000次

论文中的图有时会出现与实现代码不对应的情况,这会让读者头大,不知是有意还是无意为之。这次,没想到大名鼎鼎的 Transformer 论文也「翻车」了。
2017 年,谷歌大脑团队在其论文《Attention Is All You Need》中创造性的提出 Transformer 这一架构,自此这一研究一路开挂,成为当今 NLP 领域最受欢迎的模型之一,被广泛应用于各种语言任务,并取得了许多 SOTA 结果。

不仅如此,在 NLP 领域一路领先的 Transformer,迅速席卷计算机视觉(CV)、语音识别等领域,在图像分类目标检测语音识别等任务上取得良好的效果。
图片
论文地址:https://arxiv.org/pdf/1706.03762.pdf

从推出至今,Transformer 已经成为众多模型的核心模块,比如大家熟悉的 BERT、T5 等都有 Transformer 的身影。就连近段时间爆火的 ChatGPT 也依赖 Transformer,而后者早已被谷歌申请了专利。
图片
图源:https://patentimages.storage.googleapis.com/05/e8/f1/cd8eed389b7687/US10452978.pdf

此外 OpenAI 发布的系列模型 GPT(Generative Pre-trained Transformer),名字中带有 Transformer,可见 Transformer 是 GPT 系列模型的核心。

与此同时,最近 OpenAI 联合创始人 Ilya Stutskever 在谈到 Transformer 时表示,当 Transformer 刚发布之初,实际上是论文放出来的第二天,他们就迫不及待的将以前的研究切换到 Transformer ,后续才有了 GPT。可见 Transformer 的重要性不言而喻。

6 年时间,基于 Transformer 构建的模型不断发展壮大。然而现在,有人发现了 Transformer 原始论文中的一处错误。

Transformer 架构图与代码「不一致」

发现错误的是一位知名机器学习与 AI 研究者、初创公司 Lightning AI 的首席 AI 教育家 Sebastian Raschka。他指出,原始 Transformer 论文中的架构图有误,将层归一化(LN)放置在了残差块之间,而这与代码不一致。
图片
Transformer 架构图如下左,图右为 Post-LN Transformer 层(出自论文《On Layer Normalization in the Transformer Architecture》[1])。
图片
不一致的代码部分如下,其中 82 行写了执行顺序「layer_postprocess_sequence="dan"」,表示后处理依次执行 dropout、residual_add 和 layer_norm。如果上图左中的 add&norm 理解为:add 在 norm 上面,即先 norm 再 add,那确实代码和图不一致。
图片
代码地址:
https://github.com/tensorflow/tensor2tensor/commit/f5c9b17e617ea9179b7d84d36b1e8162cb369f25#diff-76e2b94ef16871bdbf46bf04dfe7f1477bafb884748f08197c9cf1b10a4dd78e…

接下来,Sebastian 又表示,论文《On Layer Normalization in the Transformer Architecture》认为 Pre-LN 表现更好,能够解决梯度问题。这是很多或者大多数架构在实践中所采用的,但它可能导致表示崩溃。

层归一化在注意力和全连接层之前被放置于残差连接之中时,能够实现更好的梯度。
图片
因此,虽然关于 Post-LN 或 Pre-LN 的争论仍在继续,但另一篇论文结合了这两点,即《ResiDual: Transformer with Dual Residual Connections》[2]。
图片
对于 Sebastian 的这一发现,有人认为,我们经常会遇到与代码或结果不一致的论文。大多数是无心之过,但有时令人感到奇怪。考虑到 Transformer 论文的流行程度,这个不一致问题早就应该被提及 1000 次。

Sebastian 回答称,公平地讲,「最最原始」的代码确实与架构图一致,但 2017 年提交的代码版本进行了修改,同时没有更新架构图。所以,这实在令人困惑。
图片
正如一位网友所说,「读代码最糟糕的是,你会经常发现这样的小变化,而你不知道是有意还是无意。你甚至无法测试它,因为你没有足够的算力来训练模型。」

不知谷歌之后会更新代码还是架构图,我们拭目以待!

参考链接:
论文[1]:https://arxiv.org/pdf/2002.04745.pdf
论文[2]https://arxiv.org/pdf/2304.14802.pdf
理论Transformer
相关数据
机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

语音识别技术

自动语音识别是一种将口头语音转换为实时可读文本的技术。自动语音识别也称为语音识别(Speech Recognition)或计算机语音识别(Computer Speech Recognition)。自动语音识别是一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处理理论、信息论、计算机科学等众多学科紧密相连。由于语音信号的多样性和复杂性,目前的语音识别系统只能在一定的限制条件下获得满意的性能,或者说只能应用于某些特定的场合。自动语音识别在人工智能领域占据着极其重要的位置。

图像分类技术

图像分类,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。

层归一化技术

深度神经网络的训练是具有高度的计算复杂性的。减少训练的时间成本的一种方法是对神经元的输入进行规范化处理进而加快网络的收敛速度。层规范化是在训练时和测试时对数据同时进行处理,通过对输入同一层的数据进行汇总,计算平均值和方差,来对每一层的输入数据做规范化处理。层规范化是基于批规范化进行优化得到的。相比较而言,批规范化是对一个神经元输入的数据以mini-batch为单位来进行汇总,计算平均值和方法,再用这个数据对每个训练样例的输入进行规整。层规范化在面对RNN等问题的时候效果更加优越,也不会受到mini-batch选值的影响。

目标检测技术

一般目标检测(generic object detection)的目标是根据大量预定义的类别在自然图像中确定目标实例的位置,这是计算机视觉领域最基本和最有挑战性的问题之一。近些年兴起的深度学习技术是一种可从数据中直接学习特征表示的强大方法,并已经为一般目标检测领域带来了显著的突破性进展。

推荐文章
暂无评论
暂无评论~