Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

大规模开放数字商业知识图谱评测基准来了:OpenBG上线天池

在数字商业领域,知识图谱业务的蓬勃发展在许多应用显示出了巨大的潜力,但它仍面临着诸多挑战。由阿里巴巴藏经阁团队和浙江大学开放的数字商业知识图谱评测基准 OpenBG 提供了丰富的数字商业领域知识图谱的评测数据集,覆盖基于知识图谱的商品显著性推理、商品同款挖掘、商品知识图谱链接预测等任务,对模型展开了全方位评测,旨在帮助算法人员对模型取得更好的理解。

近年来,知识图谱受到学术界和产业界的广泛关注,在教育、生物医学、金融等领域得到了广泛的应用,凸显了结构化知识在智能应用中的重要作用。2020 年图灵奖得主 LeCun、Bengio 和 Hinton 在 2015 年《Nature》论文[1]曾指出:融合表示学习与复杂知识推理是人工智能进步的阶梯。在数字商业领域,知识图谱业务的蓬勃发展在许多应用显示出了巨大的潜力,但它仍面临着诸多挑战。例如,现有的商业知识图谱往往存在大量的缺失属性、实体节点和大量相同的未对齐的实体节点,且知识图谱通常由多种模态构成,因而如何对大规模数字知识图谱进行链接预测和实体对齐(同款商品挖掘)面临严峻挑战;此外,现有的知识图谱通常缺乏对知识显著性的建模,如当用户在电商平台搜索 “跑步”关键词 时,“瓶装水”一般不是用户真实的购物意图,用户关注的商品一般是 “跑步鞋、跑步机” 等健身用品。显著的常识可以帮助搜索引擎有更好的理解能力,从而返回更贴合用户需要的商品,因此如何基于数字商业知识图谱进行商品显著性推理也面临巨大挑战。

阿里巴巴藏经阁团队和浙江大学开放的数字商业知识图谱评测基准 OpenBG Benchmark 提供了在数字商业领域知识图谱的评测数据集,覆盖基于知识图谱的商品显著性推理、商品同款挖掘、电商知识图谱链接预测等任务,对模型展开了全方位的评测,旨在帮助科研和算法人员对模型取得更好的理解。

OpenBG Benchmark 介绍

OpenBG Benchmark 是一个大规模开放数字商业知识图谱评测基准,包含多个子数据集任务。数据集以开放的数字商业知识图谱 OpenBG[2]为基础构建,OpenBG 是开放的数字商业知识图谱,是一个使用统一 Schema 组织、涵盖产品和消费需求的百万级多模态数据集。OpenBG 由阿里巴巴藏经阁团队和浙江大学提供,开放的目标是利用开放的商业知识发现社会经济的价值,促进数字商务数字经济等领域的交叉学科研究,服务数字经济健康发展的国家战略需求。首期开放包含以下三大类任务:

商品常识知识显著性推理

  • 任务描述

常识知识是被社会广泛承认的对同一事物普遍存在的日常共识。在电商场景中,显著性常识基于背后的知识体系,能为不同的用户推荐合适的商品,对用户体验和购物效率有重要的意义。现有的常识分类方法往往只注重评判常识是否合理,如 "跑步需要喝水"、"出差需要背包"。但当在电商平台搜索 "跑步" 时,瓶装水一般不是用户真实的购物意图,用户关注的商品一般是 “跑步鞋”、“跑步机” 等健身用品;在搜索 "出差" 时,“背包”一般并不是用户需要的商品,但 “旅行箱” 可能是符合用户意图的商品。显著的常识可以帮助搜索引擎有更好的理解能力,从而返回更贴合用户需要的商品。

  • 任务说明

本任务要求对电商常识三元组的显著性进行判断,即给定常识三元组(S,P,O),输出其显著性分类标签,如下表所示,其中 1 表示显著,0 表示不显著。

商品同款挖掘

  • 任务描述

同款商品是指商品的重要属性完全相同且客观可比的商品,商品同款识别的主要目的是从海量结构化和无结构化的商品图文数据库中匹配得到同款商品,是构建电商产品关系的重要环节。商品同款作为商品知识图谱的重要组成部分,有很多应用场景,如同款商品发现等。

  • 任务说明

我们将商品同款识别任务定义为二分类任务,即给定商品对信息,判断商品 item 是否同款,示例如下:

商品关系推理与链接预测

  • 任务描述

由于知识图谱普遍存在不完整的问题,因此需要关系推理与链接预测技术对缺失的图谱节点进行预测。本任务旨在提升数字商业场景下知识图谱嵌入效果,满足商品推荐等应用对推理商品潜在关联性的需求。

  • 任务说明

知识图谱一般通过三元组(h,r,t)的形式组织数据,其中 h 被称为头实体,t 为尾实体,r 为连接头、尾实体的关系。如下图所示(“化妆棉”,“品牌”,“屈臣氏”)就是一个图谱三元组。知识图谱的链接预测任务指的是已知头实体(或尾实体)和关系的情况下,预测缺失的尾实体(或头实体)。下图中,(“化妆棉”,“适用群体”,?)就是一个链接预测任务,需要预测出尾实体。

  • 数据集

与商品常识显著性推理以及同款挖掘任务不同的是,链接预测任务由 3 个子任务数据集组成:OpenBG500、OpenBG500-L 和 OpenBG-IMG。其中 OpenBG500 包含 500 类关系,含百万级别规模的图谱数据;OpenBG500-L 在 OpenBG500 的基础上扩大了数据规模,含千万级别规模的图谱数据,是电子商务领域大规模的知识图谱;OpenBG-IMG 是电商领域的多模态知识图谱。3 个数据集均以 OpenBG 为基础构建,构建流程如下:

OpenBG Benchmark 挑战榜

OpenBG Benchmark 的提出旨在解决当前数字商业领域知识图谱数据集相对匮乏的问题,为算法和科研人员提供评测基准去衡量算法模型的有效性。基于 OpenBG Benchmark 阿里巴巴藏经阁团队曾在 CCKS2022 大会成功组织了学术评测比赛,吸引了 3000 多支队伍报名参赛。目前 OpenBG Benchmark 已经在阿里云天池平台长期开放,感兴趣的研究者们可以访问如下链接参与挑战,平台会在每个月的月底评出榜单 Top5 选手,并赠予天池定制礼品! 

挑战榜地址:https://tianchi.aliyun.com/dataset/122271

官方也提供了基线代码供算法人员参考: https://github.com/OpenBGBenchmark

OpenBG 参考论文如下:

  • Qu, Yincen, et al. "Commonsense Knowledge Salience Evaluation with a Benchmark Dataset in E-commerce." Findings of EMNLP 2022.

  • Xie, Xin, et al. "From Discrimination to Generation: Knowledge Graph Completion with Generative Transformer." WWW 2022 (Poster).

  • Deng, Shumin, et al. "Construction and Applications of Billion-Scale Multimodal Pre-trained Business Knowledge Graph." arXiv preprint arXiv:2209.15214  2022.


引用:

[1] https://www.nature.com/articles/nature14539

[2] https://kg.alibaba.com

产业浙江大学知识图谱阿里巴巴天池
相关数据
人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

知识图谱技术

知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。 知识图谱这个概念最早由Google提出,主要是用来优化现有的搜索引擎。不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。

数据库技术

数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增、截取、更新、删除等操作。 所谓“数据库”系以一定方式储存在一起、能予多个用户共享、具有尽可能小的冗余度、与应用程序彼此独立的数据集合。

阿里云机构

阿里云创立于2009年,是全球领先的云计算及人工智能科技公司,致力于以在线公共服务的方式,提供安全、可靠的计算和数据处理能力,让计算和人工智能成为普惠科技。 阿里云服务着制造、金融、政务、交通、医疗、电信、能源等众多领域的领军企业,包括中国联通、12306、中石化、中石油、飞利浦、华大基因等大型企业客户,以及微博、知乎、锤子科技等明星互联网公司。在天猫双11全球狂欢节、12306春运购票等极富挑战的应用场景中,阿里云保持着良好的运行纪录。 阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。 2014年,阿里云曾帮助用户抵御全球互联网史上最大的DDoS攻击,峰值流量达到每秒453.8Gb 。在Sort Benchmark 2016 排序竞赛 CloudSort项目中,阿里云以1.44$/TB的排序花费打破了AWS保持的4.51$/TB纪录。在Sort Benchmark 2015,阿里云利用自研的分布式计算平台ODPS,377秒完成100TB数据排序,刷新了Apache Spark 1406秒的世界纪录。 2018年9月22日,2018杭州·云栖大会上阿里云宣布成立全球交付中心。

https://www.aliyun.com/about?spm=5176.12825654.7y9jhqsfz.76.e9392c4afbC15r
阿里巴巴机构

阿里巴巴网络技术有限公司(简称:阿里巴巴集团)是以曾担任英语教师的马云为首的18人于1999年在浙江杭州创立的公司。

https://www.alibabagroup.com/
知识图谱嵌入技术

知识图谱嵌入(Knowledge Graph Embedding,KGE)是将包含实体和关系的知识图谱的组成部分嵌入到连续向量空间中,在保持知识图谱固有结构的同时简化操作。

推荐文章
暂无评论
暂无评论~