在 VGG、U-Net、TCN 网络中... CNN 虽然功能强大,但必须针对特定问题、数据类型、长度和分辨率进行定制,才能发挥其作用。我们不禁会问,可以设计出一个在所有这些网络中都运行良好的单一 CNN 吗?
论文地址:https://arxiv.org/pdf/2206.03398.pdf 代码地址:https://github.com/david-knigge/ccnn
该研究提出 Continuous CNN(CCNN):一个简单、通用的 CNN,可以跨数据分辨率和维度使用,而不需要结构修改。CCNN 在序列 (1D)、视觉 (2D) 任务、以及不规则采样数据和测试时间分辨率变化的任务上超过 SOTA; 该研究对现有的 CCNN 方法提供了几种改进,使它们能够匹配当前 SOTA 方法,例如 S4。主要改进包括核生成器网络的初始化、卷积层修改以及 CNN 的整体结构。










