Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

杜伟机器之心报道

在我的世界中,B站UP主搭建世界首个纯红石神经网络,图灵奖得主Yann LeCun转赞

神奇的红石,神奇的我的世界,不可思议的 UP 主。

在我的世界(Minecraft)中,红石是一种非常重要的物品。它是游戏中的一种独特材料,开关、红石火把和红石块等能对导线或物体提供类似电流的能量。
图片
红石电路可以为你建造用于控制或激活其他机械的结构,其本身既可以被设计为用于响应玩家的手动激活,也可以反复输出信号或者响应非玩家引发的变化,如生物移动、物品掉落、植物生长、日夜更替等等。

因此,在我的世界中,红石能够控制的机械类别极其多,小到简单机械如自动门、光开关和频闪电源,大到占地巨大的电梯、自动农场、小游戏平台甚至游戏内建的计算机。

近日,B 站 UP 主 @辰占鳌头等人在我的世界中实现了真正的「红石人工智能,他们耗时六个月,构建了世界上首个纯红石神经网络,任务是识别 15×15 手写数字

作者表示,他们使用非传统的计算方式——随机计算来实现神经网络,在设计和布局上比传统全精度计算简单许多,并且单次理论识别时间仅为 5 分钟。

图片

这个纯红石神经网络完成了机器学习领域常见的图像识别任务——手写数字识别,并且准确率达到了 80%(在 MNIST 数据集上模拟)。

图片

在实现的过程中,作者使用到的各种元素包括如下:

单个神经元接受多个输入并产生一个输出。

加入「乘法器」,仅使用随机数和单个逻辑门运算小数乘法。

图片

神经元阵列输出识别结果或传递到下一层。

各数字的置信度。

图片


卷积层用来提取笔画特征。

全连接第一层:压缩信息并分类。

激活函数阵列:将数据非线性地映射到高维特征空间。

全连接第二、三层:进一步分类并输出识别结果。

作者表示,该网络使用的架构是压缩的 LeNet-5准确率达到 80%。

不过,受限于 Minecraft 的运算能力,实际识别时间超过 20 分钟。尽管如此,这仍是红石数电领域的重大突破,也可能启发现实中的硬件神经网络

目前,视频的播放量已经超过 80 万,全 B 站排行榜最高第 39 名,让各路网友叹为观止。就连图灵奖得主 Yann LeCun 也在 Facebook 上转发了该视频,表示「一位非常有耐心且坚持不懈的人使用红石在我的世界中实现了 LeNet-5。」LeCun 是 LeNet 架构提出者。
图片
【Minecraft】世界首个纯红石神经网络!真正的红石人工智能(中文/English)

【Minecraft】红石卷积神经网络——原理

背后的原理
背后的原理

在另外一个视频《【Minecraft】红石卷积神经网络——原理》中,作者详细解释了红石卷积神经网络的原理。

总的来说,他们使用的是压缩的 LeNet-5 卷积神经网络,卷积是网络的第一步计算,使用一个带权重的窗口(卷积核)逐次扫描图像并提取笔画特征。

图片

然后将这些笔画特征馈入到深度神经网络(全连接层)进行分类识别。

图片


在我的世界中实现红石神经网络

作者首先列出了输入设备,包括一个单脉冲式压力板手写板和 15×15 坐标屏。其中手写板每次产生 2tick 的坐标信号,接着由屏幕绘制。

随后输入的手写数字进入卷积层,计算方法是累加卷积核被遮盖的部分,并将结果输出到下一层。并且,为了保证非线性,输出还经过了 ReLU 函数。

图片

由于卷积核只有 3×3,因而作者直接使用了电模运算,并在输出端自动进行 ReLU。

图片

另外,又由于卷积无法像动画里那样移动,所以采用了直接堆叠的方式,再通过硬连线连接到手写板输入上。

图片

到了全连接层,它的每层由若干神经网络构成。每个神经元都连接多个输入,并产生一个输出。神经元将每个输入加权累加,然后带入一个激活函数输出。
需要注意的是,加权求和是「线性分割」,而激活函数一定是非线性的,用于提升维度。作者使用了 tanh(双曲正切)作为了激活函数

图片

反映到实际的神经元电路中,如下图所示。
图片
同时,权重被储存在投掷器(用来调整物品配比生成不同频率的随机串)中,输入乘以权重后通过模电累加。

图片

最终电路实现

关于电路实现,首先通过模电计算加法,然后转为数电信号。

图片

累加器则是改装了另一位 Up 主提供的 2tick 流水线加法器,使之不会溢出。

图片

接着堆叠神经元,构成一个全连接层。

图片

最后一层的输出以及层间缓存使用如下模电计数器,它可以统计 5Hz 串中「1」的数量,容量则为 1024。

图片

最后在输出层,计数器的高 4 位被连接到计数板上,然后电路选取最大的值并在输出面板上显示。

图片

视频最后,作者展示了最终的网络结构,如下图所示。其中,权重范围为 [-1, 1],随机串长度为 1024,MNIST 数据集上的准确率约为 80%。不过当串长为 256 时,准确率仅为 62%。
图片




理论我的世界纯红石神经网络
相关数据
激活函数技术

在 计算网络中, 一个节点的激活函数定义了该节点在给定的输入或输入的集合下的输出。标准的计算机芯片电路可以看作是根据输入得到"开"(1)或"关"(0)输出的数字网络激活函数。这与神经网络中的线性感知机的行为类似。 一种函数(例如 ReLU 或 S 型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

LeNet技术

LeNet 诞生于 1994 年,是最早的卷积神经网络之一,并且推动了深度学习领域的发展。自从 1988 年开始,在许多次成功的迭代后,这项由 Yann LeCun 完成的开拓性成果被命名为 LeNet5。LeNet5 的架构基于这样的观点:(尤其是)图像的特征分布在整张图像上,以及带有可学习参数的卷积是一种用少量参数在多个位置上提取相似特征的有效方式。在那时候,没有 GPU 帮助训练,甚至 CPU 的速度也很慢。因此,能够保存参数以及计算过程是一个关键进展。这和将每个像素用作一个大型多层神经网络的单独输入相反。LeNet5 阐述了那些像素不应该被使用在第一层,因为图像具有很强的空间相关性,而使用图像中独立的像素作为不同的输入特征则利用不到这些相关性。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

堆叠技术

堆叠泛化是一种用于最小化一个或多个泛化器的泛化误差率的方法。它通过推导泛化器相对于所提供的学习集的偏差来发挥其作用。这个推导的过程包括:在第二层中将第一层的原始泛化器对部分学习集的猜测进行泛化,以及尝试对学习集的剩余部分进行猜测,并且输出正确的结果。当与多个泛化器一起使用时,堆叠泛化可以被看作是一个交叉验证的复杂版本,利用比交叉验证更为复杂的策略来组合各个泛化器。当与单个泛化器一起使用时,堆叠泛化是一种用于估计(然后纠正)泛化器的错误的方法,该泛化器已经在特定学习集上进行了训练并被询问了特定问题。

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

推荐文章
暂无评论
暂无评论~