Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

有人声称「解决了」MNIST与CIFAR 10,实现了100%准确率

这不是数据泄露了吧?

MNIST 识别的准确率已经卷上 100% 了?近日,预印版平台 arXiv 中的一篇论文《Learning with Signatures》引起了人们的关注。

在这项工作中,作者研究了在学习环境中使用 Signature Transform。该论文提出了一个监督框架,使用很少的标签提供了最先进的分类准确性,无需信用分配(credit assignment),几乎没有过拟合。作者通过使用 Signature 和对数 Signature 来利用谐波分析工具,并将其用作评分函数 RMSE 和 MAE Signature 和对数 Signature。

研究人员使用一个封闭式方程来计算可能的最佳比例因子。最终实现的分类结果在 CPU 上的执行速度比其他方法快几个数量级。作者报告了在 AFHQ 数据集、Four Shapes、MNIST 和 CIFAR10 的结果,在所有任务上都实现了 100% 的准确率

MNIST 被认为是机器学习的 Hello World,是大家入门时都会用到的数据集,其包含 7 万张手写数字图像,其中 6 万张用于训练,1 万用于测试。MNIST 中的图像是灰度的,分辨率仅 28×28 像素。尽管问题「简单」,但实现 100% 识别准确度的算法总是让人感觉不靠谱,让我们看看论文是怎么说的。

图片


  • 论文链接:https://arxiv.org/abs/2204.07953v1

  • 代码:https://github.com/decurtoydiaz/learning_with_signatures


借助Signature,少量标记样本媲美深度学习收益

在上个世纪,让计算机具有学习能力一直是重要的研究方向。近年来,使用深度学习中的有监督和无监督学习已经成为 SOTA 解决方案代表。基于模型的解决方案占主导地位的领域已迅速转变为数据驱动的框架,并取得了前所未有的成功。然而,由于此类模型的参数数量多,难以解释,且其鲁棒性缺乏收敛理论保证,因此在一些领域进展停滞不前。

近年来将 Signature Transform 集成到学习框架中已经取得不错进展,其主要作为 ML 范式中的特征提取器或作为深度网络内的池化层。由于 Signature 良好理论特性,不少研究者将其作为构建学习问题的一种方式。然而,关于 Signature 的通用框架尚未建立,这主要是因为没有一个正确定义的得分函数来指导学习机制。

近日,有研究者提出通过使用 Signature Transform 来研究一种新型的学习机制,这是一种最近开发的谐波分析工具,它提供了对不规则采样数据流的紧凑丰富的描述。研究者探索了这样一个观点,即通过将数据转换为一个紧凑而完整的域,该研究可以通过使用很少的标记样本来获得与深度学习相同的经验收益。

此外,Signature 的通用非线性属性,不受时间重新参数化影响,使其成为更适合计算机推理知识替代表示的理想候选者。毕竟,人类不需要成千上万的例子来学习简单的概念,而只需要少量精心挑选的例子来快速正确地猜测。Signatures 的出现实现了这一目标,计算机可以迅速地推断出信息,因为其表示形式容易理解、丰富且完整。不过这还需要一个得分函数,就像损失和信用分配给传统的学习框架提供了将优化引导到一个可能很好的解决方案的能力一样。

该研究使用 RMSE、MAE Signature 和 log-signature 来评估图像分布之间的视觉相似性,以确定 GAN 收敛。从另一个角度来看,RMSE、MAE Signature 和对数 signature 确实是正确定义的得分函数,可用于分类、聚类等任务。在此假设下,本研究旨在进一步研究这种学习框架的行为、性质及其在若干任务上的泛化能力。

在 Signature 情况下,该研究建议使用基于 Signature Transform 相似性度量。该框架在 CPU 上的工作速度比深度学习方法快几个数量级,并且避免了在 GPU 上以高计算和环境成本完成的数百万参数的繁琐信用分配。这些度量可以捕获详细的视觉线索,它们可用于内存占用非常小、执行速度快、准确度高的分类任务。

关于信用分配,例如反向传播,一直是现代自动化学习技术的基础;仅通过一次(pass)(即使用一个 epoch)从数据中提取所有后续信息在理论上是可行的。但实际上,由于学习机制的限制,很多方法使用不止一次的训练数据传递,这些特点不能归结为其优势。给定一个适当的得分函数,signatures 提供一种紧凑表示,计算机可以使用它来推断细粒度信息,而无需使用反向传播,因此避免优化数百万个参数

与其他训练机制相比,使用带有 signatures 的学习具有计算优势,因为标记示例的数量可以大大减少,并且训练被逐元素均值所取代,这赋予了良好泛化所需的统计鲁棒性。

给定一组 signature 顺序为图片元素均值定义为:图片则 RMSE 和 MAE signature 可定义为:

图片


使用 Signature 的 Few-shot 分类

作者认为,可以使用 signature 和定义分数函数对比测试样本(在可选的增强和计算元素平均值之后),从而实现 Few-shot 样本分类。实现极高分类准确率所需的 Signature 数量可能取决于任务的复杂性,某些类别可能只需要一个,具有更多可变性的类别可能需要数万到数千个训练样本。

为了进一步研究通过对同一测试实例的多个变换版本进行平均而引入的多重性的影响,作者使用特定增强技术(如随机对比)展示了可视化结果。

图片
)图 1:在 AFHQ 的 300 张图像上带有签名的 PCA 自适应 t-SNE,类别:猫(红色)、狗(绿色)和野生(蓝色)。

图片
图 2:给定 AFQH 样本的特征变换光谱及其对应变换与随机对比度 (a)-(d) 的比较。

通常,人们会认为在训练集上实现 100% 准确率肯定是出现了数据泄露问题。对于该研究,社交网络中的质疑声较多。

图片
在 reddit 上,有网友表示:「MNIST 数据集中有几个图人类的分类方式与标签不同。100% 的测试集准确率表明网络实际上比那些错误率的 99.7% 的网络还要差。所以正如其他人所说,100% 准确率的数字非常可疑。」

参考内容:
https://www.reddit.com/r/MachineLearning/comments/u7ouxh/r_authors_claim_to_have_solved_mnist_and_cifar/
工程MNIST
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

池化技术

池化(Pooling)是卷积神经网络中的一个重要的概念,它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效的原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合。通常来说,CNN的卷积层之间都会周期性地插入池化层。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

收敛技术

在数学,计算机科学和逻辑学中,收敛指的是不同的变换序列在有限的时间内达到一个结论(变换终止),并且得出的结论是独立于达到它的路径(他们是融合的)。 通俗来说,收敛通常是指在训练期间达到的一种状态,即经过一定次数的迭代之后,训练损失和验证损失在每次迭代中的变化都非常小或根本没有变化。也就是说,如果采用当前数据进行额外的训练将无法改进模型,模型即达到收敛状态。在深度学习中,损失值有时会在最终下降之前的多次迭代中保持不变或几乎保持不变,暂时形成收敛的假象。

超参数技术

在机器学习中,超参数是在学习过程开始之前设置其值的参数。 相反,其他参数的值是通过训练得出的。 不同的模型训练算法需要不同的超参数,一些简单的算法(如普通最小二乘回归)不需要。 给定这些超参数,训练算法从数据中学习参数。相同种类的机器学习模型可能需要不同的超参数来适应不同的数据模式,并且必须对其进行调整以便模型能够最优地解决机器学习问题。 在实际应用中一般需要对超参数进行优化,以找到一个超参数元组(tuple),由这些超参数元组形成一个最优化模型,该模型可以将在给定的独立数据上预定义的损失函数最小化。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

过拟合技术

过拟合是指为了得到一致假设而使假设变得过度严格。避免过拟合是分类器设计中的一个核心任务。通常采用增大数据量和测试样本集的方法对分类器性能进行评价。

聚类技术

将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于分类学,但是聚类不等于分类。聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

推荐文章
暂无评论
暂无评论~