Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

杜伟、陈萍机器之心报道

终于可用可组合函数转换库!PyTorch 1.11发布,弥补JAX短板,支持Python 3.10

PyTorch 1.11、TorchData 和 functorch 现已推出。

近日,PyTorch 官方宣布推出 PyTorch 1.11,此版本由 1.10 版本以来的 3,300 多次 commits 组成,由 434 位贡献者完成。此外,本次 PyTorch 官方同时发布了受 JAX 启发的库 TorchData 和 functorch 的 Beta 版本。

假如你是一名长期的 TensorFlow 用户,你一直想切换到 JAX 或 PyTorch,或许 1.11 版本能为你带来帮助。

图片


PyTorch地址:https://pytorch.org/blog/pytorch-1.11-released/


本次亮点可总结为如下:

  • TorchData 是一个新的库,用于通用模块化数据加载原型,可以轻松构建灵活、高性能的数据 pipeline。

  • functorch 是一个向 PyTorch 添加可组合函数转换的库。

  • 分布式数据并行 (DDP) 静态图优化趋于稳定。


网友也不禁感叹:终于可以安装 functorch,一套受 JAX 启发的 ops!vjp、 jvp、 vmap... 终于可用了!!!

图片


推出 TorchData
TorchData Beta 版:这是一个通用模块化数据加载原型库,用于轻松构建灵活且高性能的数据 pipeline。根据社区反馈,PyTorch 官方发现现有的 DataLoader 将太多的功能捆绑在一起,难以扩展。此外,不同的用例通常必须重写相同的数据加载实用程序。TorchData 的目标是通过 Iterable-style 和 Map-style 的构建块 DataPipes 来实现可组合数据加载,这些构建块与 PyTorch 的 DataLoader 达到开箱即用。

DataPipe 接受 Python 数据结构上一些访问函数:__iter__用于 IterDataPipe,__getitem__用于 MapDataPipe,它们会返回一个新的访问函数。你可以将多个 DataPipe 连接在一起,形成数据 pipeline,以执行必要的数据转换工作。PyTorch 官方已经实现了超过 50 个 DataPipes,它们提供了不同的核心功能,比如打开文件、解析文本、转换样本、缓存、shuffling 和批处理。那些对连接到云提供商(如谷歌 Drive 或 AWS S3)感兴趣的用户, fsspec 和 iopath DataPipes 会提供帮助。想了解更对关于 IterDataPipe 和 MapDataPipe 的研究者,可以参考官方文档。

在 PyTorch1.1 版本中,一些 PyTorch 域库已经将数据集迁移到 DataPipes。在 TorchText 中提供的流行数据集是使用 DataPipes 实现的,其 SST-2 二进制文本分类教程的一部分演示了如何使用 DataPipes 为模型预处理数据。在 TorchVision 和 TorchRec 中还有其他数据集的原型实现。你可以参考官方提供的具体的示例。

TorchData 文档已经上线,它包含一个教程,教程介绍了如何使用 DataPipes、将它们与 DataLoader 一起使用、如何实现自定义。

推出 functorch

PyTorch 官方宣布推出 functorch 的首个 beta 版本。受到 Google JAX 的极大启发,functorch 是一个向 PyTorch 添加可组合函数转换的库。该库旨在提供可组合的 vmap(向量化)和 autodiff 转换,可与 PyTorch 模块和 PyTorch autograd 一起使用,并具有良好的渴望模式(eager-mode)性能。

可组合的函数转换可以帮助解决当前在 PyTorch 中难以实现的许多用例:
  • 计算每样本梯度(per-sample-gradients)(或者其他每样本量)

  • 单机运行模型集合

  • 在 MAML 内循环中高效地批处理任务

  • 高效地计算(批处理)雅可比矩阵(Jacobians)和黑塞矩阵(Hessians)


vmap(向量化)、vjp(反向模式 AD)和 jvp(前向模式 AD)转换的组合使得用户毫不费劲地表达上述内容,无需为每个转换设计单独的库。

分布式训练:稳定的 DDP 静态图

DDP 静态图假设用户的模型在每次迭代中都使用相同的一组已使用 / 未使用的参数,因此它可以确定地了解相关状态,例如哪些钩子(hook)将触发、钩子将触发多少次以及第一次迭代后的梯度计算就绪顺序。 

静态图在第一次迭代中缓存这些状态,因此它可以支持 DDP 在以往版本中无法支持的功能,例如无论是否有未使用的参数,在相同参数上支持多个激活检查点。当存在未使用的参数时,静态图功能也会应用性能优化,例如避免遍历图在每次迭代中搜索未使用的参数,并启用动态分桶(bucketing)顺序。DDP 静态图中的这些优化为一些推荐模型带来了 10% 的 QPS 增益。

要启用静态图,只需在 DDP API 中设置 static_graph=True ,如下代码所示:
ddp_model = DistributedDataParallel(model, static_graph=True)

PyTorch 1.11一些更新

在 Python API 方面:修复了 python deepcopy 以正确复制 Tensor 对象上的所有属性,此更改可确保 Tensor 上的 deepcopy 操作能正确复制所有属性(而不仅仅是普通的 Tensor 属性)。

图片

在 torch.linspace 和 torch.logspace 中,steps 参数不再是可选的。此参数在 PyTorch 1.10.2 中默认为 100,但已被弃用。在 PyTorch 1.11 中,它不再是可选的。

图片

在 CUDA 方面,删除了 THCeilDiv 函数和相应的 THC/THCDeviceUtils.cuh header;删除 THCudaCheck;删除 THCudaMalloc(), THCudaFree(), THCThrustAllocator.cuh。

  • 添加复数支持 Adagrad 和 Adadelta 优化器;

  • 添加 torch.nn.utils.rnn.{unpack_sequence,unpad_sequence}函数;

  • 为 GPU 上的 CSR 张量添加了 torch.sparse.sampled_addmm;


基础设施支持:

  • 添加了对 ROCm 4.3.1 的支持

  • 添加了对 ROCm 4.5.2 的支持 

  • 添加了对 CUDA 11.5 的支持 

  • 添加了对启用 CUDA 的 Bazel 构建的支持 

  • 添加了对 Python 3.10 的支持


更多内容请参考:https://github.com/pytorch/pytorch/releases/tag/v1.11.0

网友评论

PyTorch 1.11 的发布,给用户带来了一些惊喜。有网友表示,我都转到 JAX 了,这波是要诱惑我回归 PyTorch 啊。

图片

更有网友认为,PyTorch 1.11 将成为游戏改变者(game-changer)。

图片

还有网友对首个 beta 版本的 functorch 库表示了肯定,有了它,终于补足了与 JAX 相比的一块短板。

图片



入门functorchTorchDataPyTorch 1.11
相关数据
张量技术

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

推荐文章
暂无评论
暂无评论~