Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

NeurIPS 2021 | 华为诺亚Oral论文:基于频域的二值神经网络训练方法

常规符号函数的梯度几乎处处为零,不能用于反向传播。为此,来自华为诺亚方舟实验室等机构的研究者提出一种在频域中估计原始符号函数梯度的新方法。

二值神经网络(BNN)将原始全精度权重和激活用符号函数表征成 1-bit。但是由于常规符号函数的梯度几乎处处为零,不能用于反向传播,因此一些研究已经提出尝试使用近似梯度来减轻优化难度。然而,这些近似破坏了实际梯度的主要方向。

基于此,在一篇 NeurIPS 2021 论文中,来自华为诺亚方舟实验室等机构的研究者提出使用傅里叶级数的组合来估计频域中符号函数的梯度以训练 BNN,即频域逼近 (FDA)。所提方法不影响占整体能量大部分的原始符号函数的低频信息,并且将高频系数使用噪声拟合模块 (noise adaptation module) 进行估计以避免大量的计算开销。


论文地址:https://arxiv.org/pdf/2103.00841.pdf

在几个基准数据集和神经架构上的实验表明,使用该方法学习的二值网络实现了 SOTA 准确率

数日前,在机器之心 2021 NeurIPS MeetUp China 上,论文一作许奕星为参会者解读了该论文。

方法

该研究提出的 FDA 方法,通过利用傅里叶级数 (FS) 来估计频域中的原始符号函数,FS 估计是使用无穷项时符号函数的无损表征。在实际应用中,能量相对较低的高频系数会被忽略,以避免巨大的计算开销,并将符号函数表征为固定数量的不同周期正弦函数的组合。与现有的逼近方法相比,该研究所提出的频域逼近方法不影响原始符号函数的低频域信息,即占用符号函数能量最多的部分。因此,原始符号函数相应梯度的主要方向能够被更准确地保持。


在论文中,该研究对所提方法做了详细的理论表述。

论文中用 f(·)和 f’(·)来表示原始函数及其对应的梯度函数。由于符号函数的梯度是一个无法反向传播的脉冲函数,需要应用进化算法(evolutionary algorithm)等零阶算法来达到最优解,但这是非常低效的。因此该研究提出找到一个代理函数,通过一阶优化算法(如 SGD)依靠实验求解,而理论上具有与符号函数相同的最优解。

已有研究证明,任何周期为 T 的周期信号都可以分解为傅里叶级数的组合:


其中 ω = 2π/T 是角频率,α_0/2 是直接分量,是正弦(余弦)分量的系数。具体来说,当周期信号呈方波时,有:


并推导出方波 s(t) 的 FS:


注意到当信号被限制在单个周期内时,符号函数与方波等同:


因此,符号函数也可以被分解为正弦(余弦)函数的组合,并且其导数如下:


然后,该研究提出使用上述等式 (8) 替换 STE 中的导数,以在反向传播期间更好地逼近符号函数。

当将信号从空间域转换到频域,使用无限项时,FS 分解是符号函数的无损表征,因此等式 (6) 可以重写为:


其中,n 是 FS 的项数,相应的导数是:


然后该研究进一步证明了随着 n 的增加,估计值和 s(t)之间的均方误差会逐渐减小,并在 n → ∞ 时收敛到 0。

为了进一步补偿细微的逼近误差,该研究在训练阶段添加了一个噪声适应模块来细化梯度。


实验及结果

为了展示 FDA-BNN 优越的性能,该研究在 CIFAR-10 数据集上进行了评估实验,实验结果如下表所示。


消融实验

为了验证所提方法中每个组件的有效性、噪声适应模块和超参数的影响,该研究进行了一系列的消融实验。

首先,该研究使用 ResNet-20 架构在 CIFAR-10 上实验验证正弦模块和噪声适应模块的效果,结果如下表所示。


从上表的结果看,使用正弦模块可使训练过程受益,将准确率从 84.44% 提高到 85.83%。将正弦模块和噪声自适应模块组合在一起时得到了最佳性能,即 86.20% 的准确率

为了进一步验证噪声适应模块的用途,研究者将该模块添加到其他梯度逼近方法中,例如 DSQ 和 BNN+,结果如下表所示。


然后该研究评估了不同 η(·) 对噪声适应模块的影响。结果如下表所示,使用 shortcut 时性能更好,并且 shortcut function η(x) = α sin(x) 在实验过程中表现最好。


在 ImageNet 上的实验

该研究进一步在大规模数据集 ImageNet ILSVRC 2012 上进行了实验,使用 ResNet-18 和 AlexNet 进行实验,结果如下表所示。


对于 ResNet-18,FDA-BNN 实现了 60.2% 的 top-1 准确率和 82.3% 的 top-5 的准确率,比基线方法(Bireal-Net + PReLU)高出 1.2% 和 1.0%,并超过所有其他方法。

当以 ReActNet 作为基线方法,并使用该研究所提方法计算符号函数的梯度, FDA-BNN 达到了 66.0% 的 top-1 准确率,86.4% 的 top-5 准确率,比基线方法分别高出 0.5% 和 0.3%。

对于 AlexNet,该研究使用 Dorefa-Net 中的量化方法作为基线方法,FDA-BNN 实现了 46.2% 的 top-1 准确率和 69.7% 的 top-5 准确率,并优于其他 SOTA 方法。
理论二值化神经网络华为诺亚方舟实验室NeurIPS 2021
相关数据
华为机构

华为创立于1987年,是全球领先的ICT(信息与通信)基础设施和智能终端提供商。

https://www.huawei.com/cn/
权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

收敛技术

在数学,计算机科学和逻辑学中,收敛指的是不同的变换序列在有限的时间内达到一个结论(变换终止),并且得出的结论是独立于达到它的路径(他们是融合的)。 通俗来说,收敛通常是指在训练期间达到的一种状态,即经过一定次数的迭代之后,训练损失和验证损失在每次迭代中的变化都非常小或根本没有变化。也就是说,如果采用当前数据进行额外的训练将无法改进模型,模型即达到收敛状态。在深度学习中,损失值有时会在最终下降之前的多次迭代中保持不变或几乎保持不变,暂时形成收敛的假象。

超参数技术

在机器学习中,超参数是在学习过程开始之前设置其值的参数。 相反,其他参数的值是通过训练得出的。 不同的模型训练算法需要不同的超参数,一些简单的算法(如普通最小二乘回归)不需要。 给定这些超参数,训练算法从数据中学习参数。相同种类的机器学习模型可能需要不同的超参数来适应不同的数据模式,并且必须对其进行调整以便模型能够最优地解决机器学习问题。 在实际应用中一般需要对超参数进行优化,以找到一个超参数元组(tuple),由这些超参数元组形成一个最优化模型,该模型可以将在给定的独立数据上预定义的损失函数最小化。

导数技术

导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x_0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x_0) 或 df(x_0)/dx。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

机器之心机构

机器之心,成立于2014年,是国内最具影响力、最专业、唯一用于国际品牌的人工智能信息服务与产业服务平台。目前机器之心已经建立起涵盖媒体、数据、活动、研究及咨询、线下物理空间于一体的业务体系,为各类人工智能从业者提供综合信息服务和产业服务。

https://www.jiqizhixin.com/
量化技术

深度学习中的量化是指,用低位宽数字的神经网络近似使用了浮点数的神经网络的过程。

推荐文章
暂无评论
暂无评论~