Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

数量级效率优势,原生适配AI计算:光芯片的下一个技术突破要来了

算力技术的下一个浪潮,从未离我们这么近。

近年来,人工智能等技术的快速发展让计算机的算力需求暴增,但随着摩尔定律失效,传统芯片性能提升速度却开始大幅放缓。全世界都在寻找新的解决方法,光芯片的发展正让人看到希望。

我们经常会看到光芯片技术、光学神经网络的研究登上 Nature 和 Science 等顶尖科学杂志。在一些研究中科学家们指出,光学开关的速度要比现在商用的顶级硅芯片的晶体管快 100 到 1000 倍。

图片

相比如今顶级 CPU 每代性能约 20% 的提升水平,光芯片可能带来的提升非常夸张,这种技术距离实用化究竟有多远?科学家和创业者那里都有着不同的说法,从工作原理上看,它的确具有传统电子芯片所不具备的诸多能力。

在我们熟悉的常规计算机上,芯片晶体管会通过在两种电状态之间切换来将数据表示为 1 或 0,进而执行各种逻辑运算,为复杂的软件提供算力。而在光芯片(photonic chip)上,我们可以将数字或模拟信号编码在光的相位或强度上,光在芯片中传播的同时完成计算,运算速度比普通计算机要快很多。

光芯片对工艺尺寸要求也不苛刻,目前研究者们采用的主流工艺是 40nm ,甚至更早的工艺,而且稳定性良好,信息传输不受温度、磁场等常见环境因素影响。


从「一个错误方向」到 AI 技术的希望

使用光进行计算的想法可以追溯到 1950 年代。但随着技术的发展,电子计算机成为了商业化铺开的选择。1980 年代,贝尔实验室曾尝试制造通用化的光芯片,但由于构建可工作的光学晶体管过于困难而失败。

最近几年,人们又完成了一系列光芯片的研究,终于实现了技术突破。

2006 年,英特尔推出首款标准 CMOS 工艺的电子混合硅激光器,基于此技术的超高带宽光学传输架构成为了高性能数据中心的研究方向,人们希望通过光传输降低数据中心的带宽瓶颈。

图片

在英伟达 GTC 2021 大会上,计算机架构专家 Bill Dally 设想了未来的光学 DGX,其中 GPU 通过有机封装与电子集成电路进行通信,解决了芯片间的互联带宽问题。

更加接近实用化的光计算芯片则在近两年被人们提出。2017 年 6 月,麻省理工学院的一个研究小组尝试将「光子计算」与「人工智能」结合,研究发表在自然 · 光子学子刊的封面文章《Deep learning with coherent nanophotonic circuits》上。

MIT 团队提出了一种以光子方式代替 CPU 和 GPU 进行 AI 计算的方法,其使用了多束光线,它们的波相互作用产生干涉图案,传达预期操作的结果。研究人员把这种设备称为可编程纳米光子处理器(Programmable Nanophotonic Processor)。

图片

MIT 提出的光处理器方法中,光干扰单元的示意图。

该处理器使用一个波导阵列,可以根据需要修改相互连接的方式,为特定的计算编写一组波束。在应用中,它可以以典型的人工智能算法执行计算,但速度要比在传统硅芯片上快得多。

MIT 在研究中展示,利用光计算的独特优势,全光学神经网络的计算速度可以比传统方法速度提升至少两个数量级,能耗效率提升三个数量级。该研究不仅提出了一种可行性高的光芯片方向,又验证了其正好适用于 AI 计算这一算力需求极高的领域。在此之后,光芯片进入了加速发展的阶段。

大学实验室和一些创业公司提出的光芯片大多遵循这样的范式,它们看起来大体和普通计算机芯片相同,但内含一些光波导 。它们通过在微小的通道内分裂和混合光束来进行计算,光线的尺度小至纳米。在硬件底层,电芯片协调光子的部分功能,并提供临时内存存储。

在光芯片完成实验室阶段的展示后,算法、总线和存储等方面的研究也正在进行中,一些光芯片已经可以与数据中心适配,并与大多数主要深度学习框架配合使用。

下一个技术突破

在致力于研发光芯片的创业公司行列中,曦智科技可谓一股重要力量。

2017 年,完成自然子刊封面研究的麻省理工学院研究团队成员成立了全球首家光芯片创业公司曦智科技(Lightelligence),论文的第一作者沈亦晨任联合创始人兼 CEO。 

2019 年 4 月,曦智科技正式发布了全球首款光子芯片原型板卡,成功将此前需要占据半个实验室的完整光子计算系统集成到了常规大小的板卡上。这块芯片成功运行了 MNIST 数据集的图像识别任务,其准确率已接近电子芯片(97%以上)。

曦智科技成功解决了光芯片处理准确性的问题。在测试中,整个模型超过 95% 的运算是在光子芯片上完成的,其处理准确率已接近电子芯片 (97% 以上),而完成矩阵乘法的用时则可缩短至最先进的电子芯片的 1/100 以内。

图片

曦智科技提出的光芯片。

这家起源于集成光子计算突破性研究的公司,迄今为止已筹集了超过 1.1 亿美元融资。其团队一直在致力于构建世界上最广泛的集成光子系统。

最近,光芯片领域即将迎来新的技术进展。12 月 15 日晚 7 点整,曦智科技将会直播发布其最新光子计算处理器,用光子技术突破集成电路的产业边界,展示光子计算的优越性,以及光子技术改变世界的巨大力量。

图片

光子芯片的速度究竟有多快,下周三晚即将揭晓。

产业芯片
相关数据
英特尔机构

英特尔(NASDAQ: INTC)是全球半导体行业的引领者,以计算和通信技术奠定全球创新基石,塑造以数据为中心的未来。我们通过精尖制造的专长,帮助保护、驱动和连接数十亿设备以及智能互联世界的基础设施 —— 从云、网络到边缘设备以及它们之间的一切,并帮助解决世界上最艰巨的问题和挑战。

http://www.intel.cn/
相关技术
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

模拟信号技术

模拟信号(英语:analog signal),是指在时域上数学形式为连续函数的信号。与模拟信号对应的是数字信号,后者采取分立的逻辑值,而前者可以获取连续值。模拟信号的概念常常在涉及电的领域中被使用,不过经典力学、气动力学(pneumatic)、水力学等学科有时也会使用模拟信号的概念。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

摩尔定律技术

摩尔定律是由英特尔创始人之一戈登·摩尔提出来的。其内容为:积体电路上可容纳的电晶体数目,约每隔两年便会增加一倍;经常被引用的“18个月”,是由英特尔首席执行官大卫·豪斯所说:预计18个月会将芯片的性能提高一倍。

Lightelligence机构

曦智团队成员有机器学习的先驱、光子研究领域的领头羊和半导体行业的资深人士。基于软硬件联合设计方式,团队成立后第一年,打造了世界上第一台光学人工智能推理计算机。

https://www.lightelligence.co/;https://www.lightelligence.ai/
推荐文章
暂无评论
暂无评论~