Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

阿里安全人工智能治理与可持续发展实验室(AAIG)专栏

给图片打「马赛克」可骗过AI视觉系统,阿里安全新研究入选ICCV 2021

来自阿里安全人工智能治理与可持续发展实验室(AAIG)等机构的研究者提出了一个新的机制来生成对抗样本,即与增加对抗扰动相反,他们通过扔掉一些不可察觉的图像细节来生成对抗样本。这项研究成果已被 AI 顶会 ICCV 2021 收录。

人类拥有很强的抽象能力和联想力,例如一个有几块积木拼成的乐高玩具,小朋友也能轻易认出其中描述的场景 (人开着小车)。甚至几个像素,玩家也可以轻易认出这是一个戴着帽子的小人 (超级玛丽奥)。

图 1. 乐高与像素马里奥

尽管我们期望模型能具有和人相当的能力,但是「抽象能力」对于模型来说,在当前显然还是一个相当具有挑战性的任务。但相反的,如果我们从对抗样本的角度来考虑:存不存在一种可能,如果我们去掉图片中一些对模型来说关键而微小的特征,模型就无法再正确识别这些图片?

一. 什么是对抗样本

对抗样本一开始由 Szegedy 等人在 2013 年定义: 给定一张原始图片 x 及其标签 y,以及模型对抗样本是指在原图 x 上加一些刻意制造的微小扰动,从而让结果图像无法被正确识别(如下图所示)。通常来说,对抗扰动被限制在一定阈值内, 定义为,从而保证结果图对人来说与原图几乎不可区分。后续有很多相关工作在当前设定下进一步探索了更多生成对抗样本的攻击方式,以及其他性质,例如迁移性等。

图 2. 对抗攻击

二. 对抗样本可能是特征

对抗样本提出后,有各种各样的防御工作被提出,尤其是对抗训练最为有效的防御方式之一,但是对抗训练非常明显的问题是:在稳健性(robustness)和准确率(accuracy)之间始终有一个平衡,即对抗训练在提升模型稳健性的同时也会导致模型的准确率下降。为了解释这一现象,Ilyas 等人给对抗样本的存在提出了一个假设:对抗样本不是 bug,而是一组对人来说不可感知的特征。以人类感知为中心,人类所能察觉的特征就是 robust feature,其他的特征则是 non-robust。例如图 3 的狗狗,人类只会注意到其中的耳朵、鼻子等显著特征(robust feature)。

图 3. 稳健特征与非稳健特征

Ilyas 等人通过一组巧妙的实验说明对抗样本其实是模型从数据中学习到一部分特征,尽管对人来说不可感知,但是对于模型来说是具有预测意义的。受 Ilyas 等人工作启发, 该研究试图从一个相反的角度来讨论一个潜在的攻击机制:我们可否去掉一些对人来说微小而不可感知、但是对于模型决策又重要的特征,从而形成对抗样本呢?

三. AdvDrop,  通过丢信息来制造对抗样本

图 4. 左侧 AdvDrop,信息丢失越来越多,右侧 PGD, 对抗噪声越来越大

该研究在这个工作中提出一个新的机制来生成对抗样本:与增加对抗扰动相反,他们通过扔掉一些不可察觉的图像细节来生成对抗样本。关于两种相反机制的说明如图,当 AdvDrop 放宽丢掉的信息量的阈值 epsilon,产生的对抗样本越来越趋近于一张灰色图片,并且伴随着图像存储量的降低。相反的,PGD 生成的对抗样本,随着干扰幅度的增大,越来越接近于无序噪音。

论文地址:https://arxiv.org/pdf/2108.09034.pdf

一张更细节的对比如图 5 所示, 从局部区域来看,PGD 在图片的局部生成了更多的细节,表现为更丰富的色彩。而相反的,AdvDrop 生成的对抗样本与原图相比失去了一些局部细节,表现在色彩精度的降低。

 图 5 PGD 与 AdvDrop 局部色彩丰富度

3.1. 方法 

但是如何选择区域去丢掉图片的信息呢?以及如何保证扔掉的细节对人来说依然是不可感知的呢? 

来阿里安全人工智能治理与可持续发展实验室(AAIG)等机构的研究者提出一种通过优化量化表的方式来选择丢掉信息的区域以及丢掉的信息量。此外,为了保证丢掉的细节对于人来说依然不可感知,该研究先将图像通过离散傅里叶变换从 RGB 转换到频域,再用量化表去量化一些频域的信息。频域操作相比于 RGB 的优点是,能更好的分离图像的细节信息(高频信息)和结构信息(低频信息),因此可以保证扔掉的细节对人来说不可感知

图 6 AdvDrop 算法流程

整个流程如图 6 所示,从优化上,可以被定义为:

其中 D 和分别表示的是离散余弦变换及反变换,表示的是一个可微分的量化过程。

通常的量化,可以定义为:

但是因为量化函数不可微分,极大影响优化过程。因此,该研究参考了 Gong 等人的工作,通过引入可控 tanh 函数来渐进的逼近阶梯式的量化函数,所以:

其斜度可以由 α调整,如下图所示,经过量化函数可微处理,可以更准确的反向传播梯度,从而更准确的估计出应该丢失信息的位置及量化的大小。

图 7. 不同 alpha 下 tanh 函数对量化函数的逼近层度

3.2.  结果评估

该研究用 lpips 比较了 AdvDrop 及 PGD 在相同信息量变化下的视觉得分:从对抗样本的不可感知角度来说,在同样的感知得分下,丢信息操作允许操作的信息量要比加干扰允许的更大。从人类视觉上来说,相比于加噪,人眼对于局部平滑其实更为不敏感,从图 8 可见,随着量化表阈值的增大,AdvDrop 生成的对抗样本的局部细节越少,例如蜥蜴鳞片的纹理。

图 8. 不同阈值下的攻击结果展示

从成功率上来说,无论是在目标攻击还是无目标攻击的设定下, AdvDrop 有相当高的成功率来生成一个对抗样本。在目标攻击下,最高可以达到一个 99.95% 成功率。但相比于传统加噪的对抗攻击生成方式 (例如 PGD,BIM) 可以轻易达到 100% 的成功率来说,依然是强度较弱的。该研究认为 AdvDrop 在强度方面的局限可能来自于两方面:一方面是由于量化这样的方式,另一方面,「减信息」可以操作的空间相比于「加信息」 的空间来说要小很多。

此外,该研究也评估了 AdvDrop 在不同防御下的表现。目前主流防御方式主要分为两种,一种是对抗训练 ,另一种是基于去噪的防御方式。该研究发现 AdvDrop 生成的对抗样本对于现阶段防御方式来说仍是一个挑战,尤其是基于去噪的防御方式。

具体来说,在一定扰动阈值下,基于制造对抗扰动的对抗样本生成方式经过去噪后,图片有很大概率恢复成原始图片。但是对于用 AdvDrop 生成的对抗样本来说,其本身就是由于部分特征丢失而导致的错误识别,而去噪操作甚至会加剧这种由于丢失而无法识别的问题。 

图 9. AdvDrop 和 PGD 在 Denoise 操作下的细节展示

除了防御的角度,考虑到很多数据都是从网上收集而来,而网络传输中往往存在数据压缩过程,所以通过 AdvDrop 生成的对抗样本可能「更耐传输」。当然,从另一个角度来想,也有可能对于正常图像数据来说,一些正常的数据压缩(例如 jpeg)也许不经意间就引入了对抗样本

四. 讨论及总结

该研究提出了一个新的生成对抗样本的机制,讨论了与之前加噪方式相反的一个角度来生成对抗样本。这一类型的对抗样本相比于传统加干扰生成的对抗样本来说,更难以防御。

该工作也展示了模型另一个角度的局限性:对重要细节丢失的稳健性。

在这个工作中,研究人员仅仅探索了在频域上丢信息的操作,未来,通过其他丢信息方式来生成对抗样本都是可以值得尝试的工作。
 
五. Benchmark

AI 模型的对抗攻防是一个相互博弈的过程,模型的对抗攻击与防御层出不穷,以上提出的攻击算法也仅仅是一种攻击形态。为了更加客观、公平地衡量 AI 模型的稳健性, 清华大学、阿里安全、瑞莱智慧联合发布的业内最新的基于深度学习模型的对抗攻防基准平台 Adversarial Robustness Benchmark,此次推出 AI 对抗安全基准基本上包括了目前主流的 AI 对抗攻防模型,涵盖了数十种典型的攻防算法。不同算法比测的过程中尽量采用了相同的实验设定和一致的度量标准,从而在最大限度上保证了比较的公平性和客观性。

对抗攻防基准平台 Adversarial Robustness Benchmark地址:https://ml.cs.tsinghua.edu.cn/adv-bench/#/

图 10. Adversarial Robustness Benchmark
理论ICCV 2021阿里安全人工智能治理与可持续发展实验室生成对抗样本新机制
相关数据
感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

对抗训练技术

对抗训练涉及两个模型的联合训练:一个模型是生成器,学习生成假样本,目标是骗过另一个模型;这另一个模型是判别器,通过对比真实数据学习判别生成器生成样本的真伪,目标是不要被骗。一般而言,两者的目标函数是相反的。

对抗样本技术

对抗样本是一类被设计来混淆机器学习器的样本,它们看上去与真实样本的几乎相同(无法用肉眼分辨),但其中噪声的加入却会导致机器学习模型做出错误的分类判断。

生成对抗技术

生成对抗是训练生成对抗网络时,两个神经网络相互博弈的过程。两个网络相互对抗、不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真实。

量化技术

深度学习中的量化是指,用低位宽数字的神经网络近似使用了浮点数的神经网络的过程。

推荐文章
暂无评论
暂无评论~