Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

机器之心编辑部报道

曾被ICLR拒稿,字节跳动今斩获最佳论文,ACL 2021各大奖项揭晓

被顶会拒稿请不要灰心,说不定你的论文会成为另一个顶会的最佳。

昨日,NLP 领域国际顶会 ACL 2021 公布获奖论文信息:来自字节跳动火山翻译的一篇神经机器翻译工作被评为最佳论文。此外,最佳主题论文、杰出论文也揭晓。

ACL,是计算语言学自然语言处理领域的顶级国际会议,由国际计算语言学协会组织,每年举办一次。

一直以来,ACL 在 NLP 领域的学术影响力都位列第一,它也是 CCF-A 类推荐会议。

今年的 ACL 大会已是第 59 届,计划于 8 月 1-6 日在泰国曼谷举行。

不久之前,ACL 2021 官方发布了关于本届大会接收结果:本届 ACL 共计收到 3350 篇论文投稿,最终有 21.3% 的论文录用到主会(Main  Conference),并额外接收了 14.9% 的论文到 Findings 子刊,综合录用率为 36.2%。我们可以从被接收的论文作者与机构中发现,有大量的国内论文被接收。

除了接收论文之外,今年的 ACL 的组织成员里面也有大量的华人面孔,特别是今年的年会主席是中科院自动化研究所的宗成庆老师,程序主席包括华盛顿大学的 Fei Xia 教授、香港理工大学 Wenjie Li 教授。

昨天,大家最为关注的 ACL 2021 获奖论文公布,令人惊喜的是这些获奖论文里面也包含多篇国内研究成果:如来自字节跳动火山翻译的机器翻译研究获得最佳论文,来自港中文、腾讯 AI Lab 合作的论文也入选杰出论文。

最佳论文:字节跳动火山翻译

ACL 2021 的最佳论文来自字节跳动火山翻译团队,该研究提出了一种新的词表学习方案 VOLT,在多种翻译任务上取得了优秀的结果。

  • 标题:Vocabulary Learning via Optimal Transport for Neural Machine Translation

  • 作者:许晶晶、周浩、甘纯、郑在翔、李磊

  • 论文地址:https://arxiv.org/pdf/2012.15671.pdf

  • 代码地址:https://github.com/Jingjing-NLP/VOLT

对于从业者来说,大家无时无刻不在使用词表对语言进行向量化表示。在深度学习时代,词表构建基本上是所有自然语言处理任务的第一步工作。尽管现今也有了一些比较通用的词表处理方法,但是仍然没有办法回答最基础的问题:什么是最优词表,如何生成最优词表?

为了回答该问题,本论文尝试提出一种无需训练的词表评价指标和针对该评价指标的词表学习方案 VOLT。该方案在常用的英德翻译、英法翻译、低资源翻译、多语言翻译上都取得了相比传统词表解决方案更好的结果。

表 1:使用 VOLT 与广泛使用的 BPE 词表进行词汇搜索的结果比较。VOLT 得到了更高的 BLEU 分数,同时大大减少了词汇量。此处采用的是 X-En 设置下的词汇量。

使用 VOLT 生成词汇,简单的基线方法就能够实现 SOTA 结果。该研究在 En-De 数据集上测试了 VOLT 和其他几种方法的性能,结果如表 5 所示。与其他方法相比,VOLT 以更少的词汇量实现了几乎最佳的性能。这些结果表明,简单的基线方法使用定义明确的词表就能够获得良好的结果。

表 5:VOLT 和强基准之间的比较结果。VOLT 在词汇量较少的情况下取得了几乎最好的表现。

值得一提的是,该研究修改前的版本曾投至另一个机器学习顶会 ICLR 2021。在 Openreview 网站上现在还能看到该论文及匿名评审的结果。当时四名评审给出的意见是 3、3、4、4——未达到接收标准,作者做了rebuttal之后撤稿投了ACL。

论文作者之一的周浩在社交网络中表示:「关于从 ICLR 到 ACL 的转投当时情况是这样的,我们在投 ICLR 的时候花了太多时间在实验上,在 writing 上花的时间很不够,整个 paper 显地平铺直叙,Intuition 没有说出来,且有部分重要的实验没有补充。结果大家也看到了,我觉得这是一个重要的 lesson,也欢迎大家对比我们两个版本的论文。」

论文一作许晶晶则总结了经验与教训:「我学到的最重要教训是一定要把东西写清楚。虽然写作不是最重要的,idea 才是,但是写清楚是让评审评价工作的前提。其实 ICLR 的评审和 ACL 的评委都对我们的 Idea 做了肯定,新颖性和有趣性都是被承认的,我们给出的基于最大边际效应的解释,和把词表学习建模成一个最优运输问题都是全新的一套想法。ICLR 对 idea 没有太多问题,问题主要是在写作上,后来我们把写作改进之后,能拿到高分虽然意料之外,倒也在情理之中。有一说一,我们 ICLR 那篇工作确实写的不好。评审的反馈主要在以下几个方面:实验做的不够充分,方法介绍的不够清楚,动机也缺乏直接证据。后来的这几点,我们在 ACL 版本都做了大量的改进。我们补充了很多后续实验,写作也推倒重来,一遍遍推敲逻辑是否合理,实验是不是严谨和充分等等,整个过程是很痛苦的。所以后来我们得到 ACL 的评审认可的时候非常激动,毕竟投入了很多心血的工作终于得到了回报。」

这篇论文在一番改进之后获得了另一个顶会的最佳奖项,过程可谓大起大落。

最佳主题论文:CMU

今年的最佳主题论文(Best theme paper)研究来自卡耐基梅隆大学、巴伊兰大学、加劳德特大学与艾伦人工智能研究所等机构。第一作者殷绮妤(Kayo Yin)本科毕业于巴黎综合理工学院,目前是卡耐基梅隆大学的在读研究生。

  • 标题:Including Signed Languages in Natural Language Processing

  • 作者:Kayo Yin、Amit Moryossef、Julie Hochgesang、Yoav Goldberg、Malihe Alikhani

  • 机构:CMU、巴伊兰大学、加劳德特大学、艾伦人工智能研究所、匹兹堡大学

  • 链接:https://arxiv.org/abs/2105.05222

论文摘要:手语是许多聋哑人和重听人交流的主要手段。由于手语表现了自然语言的所有基本语言特性,该研究认为自然语言处理的工具和理论对其建模至关重要。然而,现有的手语处理 (SLP) 研究很少尝试探索和利用手语的语言结构组织。该研究呼吁 NLP 社区将手语作为具有高度社会和科学影响的研究领域。该研究首先讨论了手语在建模过程中要考虑的语言属性;然后回顾了当前 SLP 模型的局限性,并确定了将 NLP 扩展到手语的开放挑战;最后,该研究建议以下几点 (1) 采用一种有效的 tokenization 方法 (2) 语言信息模型的发展 (3) 真实世界的手语数据的收集(4) 将当地手语社区纳入到积极而主导话语权研究方向中。

六篇杰出论文

除最佳论文以外,今年的 ACL 还评出了六篇杰出论文(Outstanding papers),其中包括港中文、腾讯 AI Lab、斯坦福大学(李飞飞、曼宁等人团队)的研究。

论文 1:All That’s ‘Human’ Is Not Gold: Evaluating Human Evaluation of Generated Text

  • 作者:Elizabeth Clark、Tal August、Sofia Serrano、Nikita Haduong、Suchin Gururangan、Noah A. Smith

  • 机构:华盛顿大学、艾伦人工智能研究所

  • 论文地址:https://arxiv.org/abs/2107.00061

论文摘要:人类评估通常被认为是自然语言生成的黄金标准,但随着模型流畅程度的提升,评估者能够检测、判断出机器生成的文本吗?在这项研究中,研究者评估了非专家在故事、新闻、食谱三个领域中区分人工与机器(GPT-2、GPT-3)撰写文本的能力。他们发现,未经过训练的评估者区分 GPT-3 与人类生成文本的概率是随机的。研究者探索了三种快速训练评估者的方法以更好地识别 GPT-3 生成的文本(详细说明、附加注释的例子和配对例子) ,并发现其准确率提高了 55%,但在上面提到的三个领域仍然没有显著改善。考虑到文本域的结果不一致,以及评估者给出的判断常常相互矛盾,研究者检验了未经训练的人类评估者在自然语言生成评估中所起的作用,并为自然语言生成的研究者们提供了改进人类评估文本生成结果的最新模型建议。

论文 2:Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning

  • 作者:Armen Aghajanyan、Sonal Gupta、Luke Zettlemoyer

  • 机构:Facebook

  • 论文地址:https://arxiv.org/abs/2012.13255

论文摘要:尽管可以通过对预训练语言模型进行微调,来为广泛的语言理解任务产生 SOTA 结果,但该过程的具体原理还没有得到很好的解释,尤其是在低数据范围内。为什么使用相对普通的梯度下降算法(例如不包含强大的正则化)就能在只有数百或数千个标记样本的数据集上调整具有数亿个参数的模型?在该论文中,研究者认为从内在维度的角度分析微调,能够得到解释上述现象的实验和理论依据。该研究通过实验表明,常见的预训练模型具有非常低的内在维度;换句话说,存在与完全参数空间一样有效的微调低维重参数化。例如,通过仅优化随机投射回完全空间的 200 个可训练参数,研究者可以调整 RoBERTa 模型以在 MRPC 上实现 90% 的完全参数性能水平。此外,该研究通过实验表明,预训练隐式地最小化了内在维度,也许令人惊讶的是,经过一定数量的预训练更新,较大的模型往往具有较低的内在维度,这在一定程度上解释了它们的极端有效性。最后,研究者将内在维度与低维任务表征和基于压缩的泛化边界联系起来,以提供基于内在维度的,与完全参数数量无关的泛化边界。

论文 3:Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering

  • 作者:Siddharth Karamcheti、Ranjay Krishna、Li Fei-Fei、Christopher Manning

  • 机构:斯坦福大学

目前,这篇论文的 PDF 和网站还未公开,之后将持续关注。

论文 4:Neural Machine Translation with Monolingual Translation Memory

  • 作者:Deng Cai、Yan Wang、Huayang Li、Wai Lam、Lemao Liu

  • 机构:香港中文大学、腾讯 AI Lab

  • 论文地址:https://arxiv.org/pdf/2105.11269.pdf

论文摘要:先前的研究证明翻译记忆 (TM) 可以提高神经机器翻译 (NMT) 的性能。与使用双语语料库作为 TM 并采用源端相似性搜索进行记忆检索的现有工作相比,该研究提出了一种新框架,该框架使用单语记忆并以跨语言方式执行可学习的记忆检索,该框架具有独特的优势。首先,跨语言记忆检索器允许大量的单语数据成为 TM。第二,记忆检索器和 NMT 模型可以为最终的翻译目标进行联合优化。实验表明,该方法得到了显著的改进。值得注意的是,它甚至优于使用双语 TM 的「TM-augmented NMT」基线方法。由于能够利用单语数据,该研究还证明了所提模型在低资源和领域适应场景中的有效性。

论文 5:Scientific Credibility of Machine Translation Research: A Meta-Evaluation of 769 Papers

  • 作者:Benjamin Marie、Atsushi Fujita、Raphael Rubino

  • 机构:NICT(日本)

  • 论文地址:https://arxiv.org/pdf/2106.15195.pdf

论文摘要:本文提出了首个大规模机器翻译 (MT) 元评估(metaevaluation)。该研究对 2010 年至 2020 年发表的 769 篇研究论文进行了机器翻译评估。研究表明,MT 自动评估的实践在过去的十年中发生了巨大的变化,并遵循相关的趋势。越来越多的 MT 评估仅依靠 BLEU 得分之间的差异得出结论,而不进行任何统计意义测试或人为评价,而至少有 108 个指标声称优于 BLEU。在最近的论文中,MT 评估倾向于复制和比较以前工作中的自动度量得分,以声称一种方法或算法的优越性,而没有确认使用过完全相同的训练、验证和测试数据,度量得分不具有可比性。此外,报告标准化度量得分的工具还远未被 MT 社区广泛采用。在展示了这些缺陷累积导致可疑的评估后,该研究提出了一个准则,以鼓励更好的自动 MT 评估以及一个简单的元评估得分方法来评估其可信度。

论文 6:UnNatural Language Inference

  • 作者:Koustuv Sinha、Prasanna Parthasarathi、Joelle Pineau、Adina Williams

  • 机构:麦吉尔大学、MILA、FAIR

  • 论文地址:https://arxiv.org/pdf/2101.00010.pdf

  • GitHub 地址:https://github.com/facebookresearch/unlu

论文摘要:近期基于 Transformer 的自然语言理解研究表明,这些大规模预训练 SOTA 模型似乎能够在某种程度上理解类人的语法。在这篇论文中,研究者提供了一些新的证据,从更复杂的维度阐释了这一问题。他们发现当前的自然语言推理 SOTA 模型能够给重新排列的示例打上与此前相同的标签,也就是说,它们在很大程度上对随机的词序排列具有不变性。为了度量这个问题的严重性,研究者提出了一套度量方法,并研究了特定排列中的哪些特质使得模型具备词序不变性。例如在 MNLI 数据集中,研究者发现几乎所有 (98.7%) 的示例都至少包含一个引发黄金标签的序列。模型有时候甚至能为它们最初未能正确预测的序列分配黄金标签。在进行了全面的实验评估以后,结果表明这个问题存在于 Transformer 和基于 pre-Transformer 架构的编码器,在跨多种语言时也会出现。

ACL 获奖论文完整列表:https://2021.aclweb.org/program/accept/

参考内容:
https://www.zhihu.com/question/470224094
理论字节跳动火山翻译最佳论文ACL 2021
相关数据
字节跳动机构

北京字节跳动科技有限公司成立于2012年,是最早将人工智能应用于移动互联网场景的科技企业之一,是中国北京的一家信息科技公司,地址位于北京市海淀区知春路甲48号。其独立研发的“今日头条”客户端,通过海量信息采集、深度数据挖掘和用户行为分析,为用户智能推荐个性化信息,从而开创了一种全新的新闻阅读模式

bytedance.com
李飞飞人物

李飞飞,斯坦福大学计算机科学系教授,斯坦福视觉实验室负责人,斯坦福大学人工智能实验室(SAIL)前负责人。专业领域是计算机视觉和认知神经科学。2016年11月李飞飞加入谷歌,担任谷歌云AI/ML首席科学家。2018年9月,返回斯坦福任教,现为谷歌云AI/ML顾问。10月20日斯坦福大学「以人为中心的AI计划」开启,李飞飞担任联合负责人。11月20日李飞飞不再担任SAIL负责人,Christopher Manning接任该职位。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

自然语言理解技术

自然语言理解是人工智能的核心课题之一,也被广泛认为是最困难和最具标志性的任务。最经典的两个人工智能思想实验——图灵测试和中文房间,都是围绕自然语言理解来构建的。自然语言理解在人工智能技术体系中的重要性不言而喻,它一方面承载着机器和人的交流,另一方面直达知识和逻辑。自然语言理解也是人工智能学者孜孜以求的圣杯,机器学习的巨擘 Michael I. Jordan 就曾经在 Reddit 上的 AMA(Ask Me Anything)栏目中畅想用十亿美元建立一个专门用于自然语言理解的实验室。

神经机器翻译技术

2013 年,Nal Kalchbrenner 和 Phil Blunsom 提出了一种用于机器翻译的新型端到端编码器-解码器结构 [4]。该模型可以使用卷积神经网络(CNN)将给定的一段源文本编码成一个连续的向量,然后再使用循环神经网络(RNN)作为解码器将该状态向量转换成目标语言。他们的研究成果可以说是神经机器翻译(NMT)的诞生;神经机器翻译是一种使用深度学习神经网络获取自然语言之间的映射关系的方法。NMT 的非线性映射不同于线性的 SMT 模型,而且是使用了连接编码器和解码器的状态向量来描述语义的等价关系。此外,RNN 应该还能得到无限长句子背后的信息,从而解决所谓的「长距离重新排序(long distance reordering)」问题。

机器翻译技术

机器翻译(MT)是利用机器的力量「自动将一种自然语言(源语言)的文本翻译成另一种语言(目标语言)」。机器翻译方法通常可分成三大类:基于规则的机器翻译(RBMT)、统计机器翻译(SMT)和神经机器翻译(NMT)。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

自然语言推理技术

自然语言推理是在给定“前提”的情况下确定“假设”是真(蕴涵),假(矛盾)还是未确定(中立)的任务。

GPT-2技术

GPT-2是OpenAI于2019年2月发布的基于 transformer 的大型语言模型,包含 15 亿参数、在一个 800 万网页数据集上训练而成。据介绍,该模型是对 GPT 模型的直接扩展,在超出 10 倍的数据量上进行训练,参数量也多出了 10 倍。在性能方面,该模型能够生产连贯的文本段落,在许多语言建模基准上取得了 SOTA 表现。而且该模型在没有任务特定训练的情况下,能够做到初步的阅读理解、机器翻译、问答和自动摘要。

语言学技术

每种人类语言都是知识和能力的复合体,语言的使用者能够相互交流,表达想法,假设,情感,欲望以及所有其他需要表达的事物。语言学是对这些知识体系各方面的研究:如何构建这样的知识体系,如何获取,如何在消息的制作和理解中使用它,它是如何随时间变化的?语言学家因此关注语言本质的一些特殊问题。比如: 所有人类语言都有哪些共同属性?语言如何不同,系统的差异程度如何,我们能否在差异中找到模式?孩子如何在短时间内获得如此完整的语言知识?语言随时间变化的方式有哪些,语言变化的局限性是什么?当我们产生和理解语言时,认知过程的本质是什么?语言学研究的就是这些最本质的问题。

推荐文章
暂无评论
暂无评论~