Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

马腾宇作者陈萍、杜伟编辑

斯坦福助理教授马腾宇:ML非凸优化很难,如何破?

非凸优化问题被认为是非常难求解的,因为可行域集合可能存在无数个局部最优点,通常求解全局最优的算法复杂度是指数级的(NP 困难)。在近日的一篇文章中,斯坦福大学助理教授马腾宇介绍了机器学习中的非凸优化问题,包括广义线性模型、矩阵分解、张量分解等。

凸优化在现代机器学习中普遍存在。研究人员设计了非凸目标函数,并使用现成的优化器(例如随机梯度下降及其变体)对其进行了优化,它们利用了局部几何并进行迭代更新。即使在最坏的情况下求解非凸函数都是 NP 困难的,但实践中的优化质量通常也不是问题,人们普遍认为优化器会找到近似全局最小值。

最近,在斯坦福大学助理教授马腾宇(Tengyu Ma)的一篇文章中,他为这种有趣的现象假设了一种统一的解释:实际使用目标的大多数局部最小值约为全局最小值,并针对机器学习问题的具体实例进行了严格地形式化。



文章地址:https://arxiv.org/pdf/2103.13462.pdf

文章概览

优化非凸函数已成为现代机器学习人工智能的标准算法技术。了解现有的优化非凸函数启发式方法非常重要,我们需要设计更有效的优化器。其中最棘手的问题是寻找非凸优化问题的全局极小值,甚至仅仅是一个 4 阶多项式——NP 困难。因此,具有全局保证的理论分析依赖于优化的目标函数的特殊属性。为了描述真实世界目标函数的属性特征,研究者假设机器学习问题的许多目标函数具有以下属性:全部或者绝大多数局部极小值近似于全局极小值。

基于局部导数优化器可以在多项式时间内求解这一系列函数(下文讨论中也增加了一些额外的假设)。经验证据也表明机器学习深度学习的实际目标函数可能具有这样的属性。

文章共分为七个章节,各章节主旨内容如下:

  • 第一章:非凸函数的基本内容;

  • 第二章:分析技术,包括收敛至局部极小值、局部最优 VS 全局最优和流形约束优化;

  • 第三章:广义线性模型,包括种群风险分析和经验风险集中;

  • 第四章:矩阵分解问题,包括主成分分析和矩阵补全;

  • 第五章:张量分解,包括正交张量分解的非凸优化和全局最优;

  • 第六章:神经网络优化的综述与展望。



文章细节

广义线性模型

第三章讲了学习广义线性模型的问题,并证明该模型的损失函数是非凸的,但局部极小值是全局的。在广义线性模型里,假设标签生成自,其中σ: R→R 是已知的单调激活函数,ε_i∈R 均为独立同分布(i.i.d.)的均值零噪声 (与 x_i 无关),是一个固定的未知真值系数向量。

研究者的目标是从数据中恢复ω*,然后最小化经验平方风险:是相应的种群风险(population risk)。

该研究通过对其 landscape 属性的表征来分析的优化,分析路径包括两个部分:a) 所有种群风险的局部极小值都是全局极小值;b) 经验风险具有同样的属性。

不再是凸的。在本节其余部分中,研究者对这个问题进行了规律性假设。为了便于阐述,这些假设比必要的假设更为有力。当σ是恒等函数时,即σ(t)=t 为线性回归问题,损失函数是凸的。在实践中,人们已经把σ作为 sigmoid 函数,然后目标不再是凸的。在本节其余部分中,研究者对这个问题进行了规律性假设。为了便于阐述,这些假设比必要的假设更为有力。

PCA 与矩阵补全

第四章讨论了基于矩阵分解的两个优化问题:主成分分析(PCA)和矩阵补全。它们与广义线性模型的根本区别在于,目标函数具有非局部极小或全局极小的鞍点。这意味着拟凸条件或 Polyak-Lojasiewicz(PL)条件不适用于这些目标。因此,需要更复杂的技术来区分鞍点和局部极小值。

主成分分析的一种解释是用最佳低秩近似来逼近矩阵。给出一个矩阵,求其最佳秩 r 逼近(Frobenius 范数或谱范数)。为了便于说明,研究者取,并假设 M 是维数为 d×d 的对称半正定。在这种情况下,最佳秩 1 近似的形式为

矩阵补全是指从部分观测项中恢复低秩矩阵的问题,在协同过滤推荐系统降维、多类学习等方面得到了广泛的应用。研究者讨论了秩为 1 对称矩阵补全。

张量分解

第五章分析了另一个机器学习优化问题——张量分解。张量分解与矩阵分解广义线性模型的根本区别在于,这里的非凸目标函数具有多个孤立的局部极小值,因此局部极小值集不具有旋转不变性,而在矩阵补全或主成分分析中,局部极小值集具有旋转不变性。这从本质上阻止只使用线性代数技术,因为它们本质上是旋转不变的。

研究者专注于一个最简单的张量分解问题——正交四阶张量分解。假设得到一个对称的 4 阶张量,它具有低秩结构,即:


其中。研究者的目的是恢复底层组件 a_1, . . . , a_n。他假设 a_1, . . . , a_n 是单位范数 R^d 中的正交向量,则目标函数为:


作者简介


马腾宇是斯坦福大学计算机科学和统计学助理教授。他本科毕业于清华大学计算机科学系,之后在普林斯顿大学获得计算机科学博士学位。期间,马腾宇师从 Sanjeev Arora 教授,并在多个国际顶级学术会议和期刊上发表近 20 篇高质量论文。

他的主要研究兴趣为机器学习和算法方面的研究,包括非凸优化深度学习强化学习表征学习、分布式优化、凸松弛以及高维统计等。

个人主页:https://ai.stanford.edu/~tengyuma/
理论斯坦福大学马腾宇凸优化
相关数据
清华大学机构

清华大学(Tsinghua University),简称“清华”,由中华人民共和国教育部直属,中央直管副部级建制,位列“211工程”、“985工程”、“世界一流大学和一流学科”,入选“基础学科拔尖学生培养试验计划”、“高等学校创新能力提升计划”、“高等学校学科创新引智计划”,为九校联盟、中国大学校长联谊会、东亚研究型大学协会、亚洲大学联盟、环太平洋大学联盟、清华—剑桥—MIT低碳大学联盟成员,被誉为“红色工程师的摇篮”。 清华大学的前身清华学堂始建于1911年,因水木清华而得名,是清政府设立的留美预备学校,其建校的资金源于1908年美国退还的部分庚子赔款。1912年更名为清华学校。1928年更名为国立清华大学。1937年抗日战争全面爆发后南迁长沙,与北京大学、南开大学组建国立长沙临时大学,1938年迁至昆明改名为国立西南联合大学。1946年迁回清华园。1949年中华人民共和国成立,清华大学进入了新的发展阶段。1952年全国高等学校院系调整后成为多科性工业大学。1978年以来逐步恢复和发展为综合性的研究型大学。

http://www.tsinghua.edu.cn/
相关技术
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

范数技术

范数(norm),是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,是一个函数,其为向量空间内的所有向量赋予非零的正长度或大小。半范数反而可以为非零的向量赋予零长度。

张量分解技术

张量(tensor)是一个多维的数据存储形式,数据的的维度被称为张量的阶。传统的方法(例如ICA,PCA、SVD和NMF)对于维数比较高的数据,一般将数据展成二维的数据形式(矩阵)进行处理,这种处理方式使得数据的结构信息丢失(比如说图像的邻域信息丢失),使得求解往往病态。而采用张量对数据进行存储,能够保留数据的结构信 息,因此近些年在图像处理以及计算机视觉等领域得到了一些广泛的应用。张量分解(Tensor decomposition)中常见的两种分解是CP分解(Canonical Polyadic Decomposition (CPD)和Tucker分解(Tucker Decomposition)。

激活函数技术

在 计算网络中, 一个节点的激活函数定义了该节点在给定的输入或输入的集合下的输出。标准的计算机芯片电路可以看作是根据输入得到"开"(1)或"关"(0)输出的数字网络激活函数。这与神经网络中的线性感知机的行为类似。 一种函数(例如 ReLU 或 S 型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

协同过滤技术

协同过滤(英语:Collaborative Filtering),简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人通过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的,特别不感兴趣信息的纪录也相当重要。协同过滤又可分为评比(rating)或者群体过滤(social filtering)。其后成为电子商务当中很重要的一环,即根据某顾客以往的购买行为以及从具有相似购买行为的顾客群的购买行为去推荐这个顾客其“可能喜欢的品项”,也就是借由社区的喜好提供个人化的信息、商品等的推荐服务。除了推荐之外,近年来也发展出数学运算让系统自动计算喜好的强弱进而去芜存菁使得过滤的内容更有依据,也许不是百分之百完全准确,但由于加入了强弱的评比让这个概念的应用更为广泛,除了电子商务之外尚有信息检索领域、网络个人影音柜、个人书架等的应用等。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

收敛技术

在数学,计算机科学和逻辑学中,收敛指的是不同的变换序列在有限的时间内达到一个结论(变换终止),并且得出的结论是独立于达到它的路径(他们是融合的)。 通俗来说,收敛通常是指在训练期间达到的一种状态,即经过一定次数的迭代之后,训练损失和验证损失在每次迭代中的变化都非常小或根本没有变化。也就是说,如果采用当前数据进行额外的训练将无法改进模型,模型即达到收敛状态。在深度学习中,损失值有时会在最终下降之前的多次迭代中保持不变或几乎保持不变,暂时形成收敛的假象。

凸优化技术

凸优化,或叫做凸最优化,凸最小化,是数学最优化的一个子领域,研究定义于凸集中的凸函数最小化的问题。凸优化在某种意义上说较一般情形的数学最优化问题要简单,譬如在凸优化中局部最优值必定是全局最优值。凸函数的凸性使得凸分析中的有力工具在最优化问题中得以应用,如次导数等。 凸优化应用于很多学科领域,诸如自动控制系统,信号处理,通讯和网络,电子电路设计,数据分析和建模,统计学(最优化设计),以及金融。在近来运算能力提高和最优化理论发展的背景下,一般的凸优化已经接近简单的线性规划一样直捷易行。许多最优化问题都可以转化成凸优化(凸最小化)问题,例如求凹函数f最大值的问题就等同于求凸函数 -f最小值的问题。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

导数技术

导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x_0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x_0) 或 df(x_0)/dx。

表征学习技术

在机器学习领域,表征学习(或特征学习)是一种将原始数据转换成为能够被机器学习有效开发的一种技术的集合。在特征学习算法出现之前,机器学习研究人员需要利用手动特征工程(manual feature learning)等技术从原始数据的领域知识(domain knowledge)建立特征,然后再部署相关的机器学习算法。虽然手动特征工程对于应用机器学习很有效,但它同时也是很困难、很昂贵、很耗时、并依赖于强大专业知识。特征学习弥补了这一点,它使得机器不仅能学习到数据的特征,并能利用这些特征来完成一个具体的任务。

张量技术

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

推荐系统技术

推荐系统(RS)主要是指应用协同智能(collaborative intelligence)做推荐的技术。推荐系统的两大主流类型是基于内容的推荐系统和协同过滤(Collaborative Filtering)。另外还有基于知识的推荐系统(包括基于本体和基于案例的推荐系统)是一类特殊的推荐系统,这类系统更加注重知识表征和推理。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

线性回归技术

在现实世界中,存在着大量这样的情况:两个变量例如X和Y有一些依赖关系。由X可以部分地决定Y的值,但这种决定往往不很确切。常常用来说明这种依赖关系的最简单、直观的例子是体重与身高,用Y表示他的体重。众所周知,一般说来,当X大时,Y也倾向于大,但由X不能严格地决定Y。又如,城市生活用电量Y与气温X有很大的关系。在夏天气温很高或冬天气温很低时,由于室内空调、冰箱等家用电器的使用,可能用电就高,相反,在春秋季节气温不高也不低,用电量就可能少。但我们不能由气温X准确地决定用电量Y。类似的例子还很多,变量之间的这种关系称为“相关关系”,回归模型就是研究相关关系的一个有力工具。

随机梯度下降技术

梯度下降(Gradient Descent)是遵循成本函数的梯度来最小化一个函数的过程。这个过程涉及到对成本形式以及其衍生形式的认知,使得我们可以从已知的给定点朝既定方向移动。比如向下朝最小值移动。 在机器学习中,我们可以利用随机梯度下降的方法来最小化训练模型中的误差,即每次迭代时完成一次评估和更新。 这种优化算法的工作原理是模型每看到一个训练实例,就对其作出预测,并重复迭代该过程到一定的次数。这个流程可以用于找出能导致训练数据最小误差的模型的系数。

目标函数技术

目标函数f(x)就是用设计变量来表示的所追求的目标形式,所以目标函数就是设计变量的函数,是一个标量。从工程意义讲,目标函数是系统的性能标准,比如,一个结构的最轻重量、最低造价、最合理形式;一件产品的最短生产时间、最小能量消耗;一个实验的最佳配方等等,建立目标函数的过程就是寻找设计变量与目标的关系的过程,目标函数和设计变量的关系可用曲线、曲面或超曲面表示。

广义线性模型技术

在统计学上, 广义线性模型 (Generalized linear model) 是一种应用灵活的线性回归模型,简称GLM。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。此模型假设实验者所量测的随机变量的分布函数与实验中系统性效应(即非随机的效应)可经由一链接函数(link function)建立起可资解释其相关性的函数。

降维技术

降维算法是将 p+1 个系数的问题简化为 M+1 个系数的问题,其中 M<p。算法执行包括计算变量的 M 个不同线性组合或投射(projection)。然后这 M 个投射作为预测器通过最小二乘法拟合一个线性回归模型。两个主要的方法是主成分回归(principal component regression)和偏最小二乘法(partial least squares)。

独立同分布技术

在概率论与统计学中,独立同分布(缩写为IID)是指一组随机变量中每个变量的概率分布都相同,且这些随机变量互相独立。一组随机变量独立同分布并不意味着它们的样本空间中每个事件发生概率都相同。例如,投掷非均匀骰子得到的结果序列是独立同分布的,但掷出每个面朝上的概率并不相同。

主成分分析技术

在多元统计分析中,主成分分析(Principal components analysis,PCA)是一种分析、简化数据集的技术。主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。由于主成分分析依赖所给数据,所以数据的准确性对分析结果影响很大。

线性代数技术

线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

优化器技术

优化器基类提供了计算梯度loss的方法,并可以将梯度应用于变量。优化器里包含了实现了经典的优化算法,如梯度下降和Adagrad。 优化器是提供了一个可以使用各种优化算法的接口,可以让用户直接调用一些经典的优化算法,如梯度下降法等等。优化器(optimizers)类的基类。这个类定义了在训练模型的时候添加一个操作的API。用户基本上不会直接使用这个类,但是你会用到他的子类比如GradientDescentOptimizer, AdagradOptimizer, MomentumOptimizer(tensorflow下的优化器包)等等这些算法。

对称矩阵技术

在线性代数中,对称矩阵(symmetric matrix)是一个方形矩阵,其转置矩阵和自身相等。对称矩阵中的右上至左下方向元素以主对角线(左上至右下)为轴进行对称。

矩阵分解技术

矩阵分解是一种将矩阵简化为其组成部分的方法。这种方法可以简化更复杂的矩阵运算,这些运算可以在分解的矩阵上执行,而不是在原始矩阵本身上执行。它的衍生Non-negative matrix factorization也被用于降维等操作上。

推荐文章
暂无评论
暂无评论~