AAAI 2021闭幕,健壮、安全、高效的机器学习国际研讨会压轴举行

研讨会由国内首家互联网银行微众银行与南洋理工大学、加州大学伯克利分校、麻省理工学院等联合主办,邀请了多位世界顶尖科学家及从业者探讨了当前AI产业化的热点话题,并形成了丰富的学术成果。

北京时间2月9日,国际人工智能顶级学术会议——2021年度AAAI会议(线上形式)顺利闭幕。同日,AAAI 2021收官议程之一——“健壮、安全、高效的机器学习”国际研讨会召开。本研讨会由国内首家互联网银行微众银行与南洋理工大学、加州大学伯克利分校、麻省理工学院等联合主办,邀请了多位世界顶尖科学家及从业者探讨了当前AI产业化的热点话题,并形成了丰富的学术成果。

本届AAAI大会主席、微众银行首席人工智能杨强教授出席研讨会并开幕致辞。杨强教授表示,近年来,在众多人工智能应用场景中,对隐私保护的重视程度越来越高。市场需求的驱动之下,机器学习迁移学习联邦学习等技术在全球得以蓬勃发展,在保护数据安全性方面,这些技术已成为人工智能产业化过程中的基础建设。此次AAAI主会就收录了相当多相关论文,而研讨会收录了来自世界各地的最新成果论文投稿20篇,这些论文主要围绕机器学习的安全性和鲁棒性、联邦学习、隐私保护、计算效率等主要议题。

加州大学伯克利分校Kurt Keutzer教授,京东大数据首席科学家、匹兹堡大学黄恒教授作为特邀嘉宾作主题演讲。研讨会同时还设置了三场技术讲座,并与参会者进行了在线互动。

加州大学伯克利分校Kurt Keutzer教授以《Efficiency is the Key to Privacy (and Security)为主题作开场演讲。Kurt Keutzer的主要研究方向为深度学习中的计算问题。在演讲中,他认为,针在私人数据使用中需要兼顾提供服务与隐私保护两者间的平衡,与语音、视频等相关的本地个人数据处理似乎是确保安全和隐私的唯一完全有效的方法。但是,在不访问云端的情况下执行这些计算需要对学习算法的效率进行重大改进。

议程随后进入首场技术讲座和在线互动,Alberto Matachana、Kenneth Co、Luis Muñoz-González、David Martinez 和Emil Lupu等几位专家的研究成果探讨了“通用攻击对压缩模型的鲁棒性和可转移性”。Yi Zhu、Yiwei Zhou、Menglin Xia等学者介绍了如何生成语义的有效对抗性。

京东大数据首席科学家、匹兹堡大学黄恒教授在第二场主题演讲标题为《Vertical Federated Kernel Learning演讲结合京东电商平台的实战经验,生动阐释了如何在保持传统机器学习算法数据私密性的同时,有效地应用垂直特征分类的数据。他表示,纵向联邦学习已被用于解决此类情况,并取得了良好效果。但是,大多数现有的纵向联邦学习方法都是线性模型,为了提高预测性能,该研究将重点放在内核的非线性学习上,并针对垂直分割的数据提出了一种联邦双随机内核学习(FDSKL)算法,以保证数据安全。

线上研讨会气氛热烈、议程紧凑。在第二场技术讲座和交流中,Shuhao Fu、Chulin Xie、Bo Li及Qifeng Chen、Chang Song、Elias Fallon 、Hai Li的论文围绕“基于残差权重的抗攻击联合学习”及“提高权重量化神经网络的对抗鲁棒性”两个前沿技术话题与参会者一起进行了讨论。高密度、高专业价值、多角度的嘉宾发言,展示出了当前国际AI技术领域较为全面的学术观点。

第三场技术讲座讨论了强化学习和编码学习,Xiaoyang Wang、Bo Li、Jacky Zhang、 Bhavya Kailkhura 、Klara Nahrstedt、Nasser Aldaghri、Hessam Mahdavifar 、Ahmad Beirami等多位研究者的论文引发了热烈的讨论。

机器学习人工智能的核心。联邦学习深度学习迁移学习等作为子分支和机器学习的最新研究方向,既是一种技术,又可视为一种商业模式。尤其近年来,在人工智能产业化加速的过程中,各国均投入了巨大的科研成本,以期抢占“制高点”。国外如加州伯克利分校、南洋理工大学等名校及科研机构,谷歌、亚马逊、Facebook、微软等科技公司,纷纷展开研究和场景落地;国内如中科院、清华大学同济大学等科研院所,微众银行、京东百度等公司持续推动,机器学习技术的产业落地生态已进入“百家争鸣、百花齐放”的繁荣期。

自国内首次提出“联邦学习”概念,微众银行、腾讯京东等公司牵头建立相关行业标准、成立相关行业协会,积极探索并将联邦学习应用于金融、医疗、生物制药等领域。如本次研讨会的主题设定,以“健壮、安全、高效”为特点的机器学习联邦学习已经成为全球AI产业化的“基础设施”和行业共识。

了解研讨会详情及报告PPT:http://federated-learning.org/rseml2021/


理论AAAI 2021
相关数据
清华大学机构

清华大学(Tsinghua University),简称“清华”,由中华人民共和国教育部直属,中央直管副部级建制,位列“211工程”、“985工程”、“世界一流大学和一流学科”,入选“基础学科拔尖学生培养试验计划”、“高等学校创新能力提升计划”、“高等学校学科创新引智计划”,为九校联盟、中国大学校长联谊会、东亚研究型大学协会、亚洲大学联盟、环太平洋大学联盟、清华—剑桥—MIT低碳大学联盟成员,被誉为“红色工程师的摇篮”。 清华大学的前身清华学堂始建于1911年,因水木清华而得名,是清政府设立的留美预备学校,其建校的资金源于1908年美国退还的部分庚子赔款。1912年更名为清华学校。1928年更名为国立清华大学。1937年抗日战争全面爆发后南迁长沙,与北京大学、南开大学组建国立长沙临时大学,1938年迁至昆明改名为国立西南联合大学。1946年迁回清华园。1949年中华人民共和国成立,清华大学进入了新的发展阶段。1952年全国高等学校院系调整后成为多科性工业大学。1978年以来逐步恢复和发展为综合性的研究型大学。

http://www.tsinghua.edu.cn/
相关技术
杨强人物

杨强现任香港科技大学新明工程学讲席教授、计算机科学和工程学系主任,大数据研究所所长 。他是人工智能研究的国际专家和领军人物,在学术界和工业界做出了杰出的服务和贡献,尤其近些年为中国人工智能(AI)和数据挖掘(KDD)的发展起了重要引导和推动作用。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

量化神经网络技术

网络量化通过减少表示每个权重所需的比特数来压缩原始网络。Gong et al. 对参数值使用 K-Means 量化。Vanhoucke et al. 使用了 8 比特参数量化可以在准确率损失极小的同时实现大幅加速。Han S 提出一套完整的深度网络的压缩流程:首先修剪不重要的连接,重新训练稀疏连接的网络。然后使用权重共享量化连接的权重,再对量化后的权重和码本进行霍夫曼编码,以进一步降低压缩率。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

百度机构

百度是全球领先的人工智能平台型公司。百度大脑是中国领先的“软硬一体AI大生产平台”,是百度AI的集大成,对外全方位输出超过270多项核心AI能力,服务230万开发者。飞桨是中国首个全面开源开放、功能完备的产业级深度学习平台,是中国自主研发的“智能时代的操作系统”。百度智能云是百度AI To B 业务的重要承载者和输出者,是产业智能化领导者。小度助手是中国领先的对话式人工智能操作系统,拥有中国市场最繁荣、开放的对话式人工智能生态,今年6月,小度助手语音交互次数超过58亿次。作为全球领先的、最活跃的自动驾驶开放平台,百度Apollo代表中国最强自动驾驶实力,被知名研究公司Navigant Research列为全球四大自动驾驶领域领导者之一。目前聚焦在以自动驾驶、汽车智能化、智能交通为核心的三大赛道。自动驾驶技术方面,超过十项中国第一,实力领跑行业。智能交通方面,百度 “ACE交通引擎”是全球首个车路行融合的全栈式智能交通解决方案。

https://www.baidu.com/
京东机构

京东(股票代码:JD),中国自营式电商企业,创始人刘强东担任京东集团董事局主席兼首席执行官。旗下设有京东零售、京东物流、京东科技子集团、印尼&泰国海外合资跨境电商等核心业务。2013年正式获得虚拟运营商牌照。2014年5月在美国纳斯达克证券交易所正式挂牌上市。 2016年6月与沃尔玛达成深度战略合作。

https://www.jd.com
腾讯机构

腾讯,1998年11月诞生于中国深圳,是一家以互联网为基础的科技与文化公司。我们的使命是“通过互联网服务提升人类生活品质”。腾讯秉承着 “一切以用户价值为依归”的经营理念,为亿万网民提供优质的互联网综合服务。 腾讯的战略目标是“连接一切”,我们长期致力于社交平台与数字内容两大核心业务:一方面通过微信与QQ等社交平台,实现人与人、服务及设备的智慧连接;另一方面为数以亿计的用户提供优质的新闻、视频、游戏、音乐、文学、动漫、影业等数字内容产品及相关服务。我们还积极推动金融科技的发展,通过普及移动支付等技术能力,为智慧交通、智慧零售、智慧城市等领域提供有力支持。 腾讯希望成为各行各业的数字化助手,助力数字中国建设。在工业、医疗、零售、教育等各个领域,腾讯为传统行业的数字化转型升级提供“数字接口”和“数字工具箱”。我们秉持数字工匠精神,希望用数字创新提升每个人的生活品质。随着“互联网+”战略实施和数字经济的发展,我们通过战略合作与开放平台,与合作伙伴共建数字生态共同体,推进云计算、大数据、人工智能等前沿科技与各行各业的融合发展及创新共赢。多年来,腾讯的开放生态带动社会创业就业人次达数千万,相关创业企业估值已达数千亿元。 腾讯的愿景是成为“最受尊敬的互联网企业”。我们始终坚守“科技向善”的初心,运用科技手段助力公益事业发展,并将社会责任融入每一个产品。2007年,腾讯倡导并发起了中国互联网第一家在民政部注册的全国性非公募基金会——腾讯公益慈善基金会。腾讯公益致力于成为“人人可公益的创连者”,以互联网核心能力推动公益行业的长远发展为己任。腾讯公益联合多方发起了中国首个互联网公益日——99公益日,帮助公益组织和广大爱心网友、企业之间形成良好的公益生态,让透明化的“指尖公益”融入亿万网民的生活。

http://www.tencent.com/
联邦学习技术

如何在保护数据隐私、满足合法合规要求的前提下继续进行机器学习,这部分研究被称为「联邦学习」(Federated Learning)。

迁移学习技术

迁移学习 是属于机器学习的一种研究领域。它专注于存储已有问题的解决模型,并将其利用在其他不同但相关问题上。比如说,用来辨识汽车的知识(或者是模型)也可以被用来提升识别卡车的能力。计算机领域的迁移学习和心理学常常提到的学习迁移在概念上有一定关系,但是两个领域在学术上的关系非常有限。

量化技术

深度学习中的量化是指,用低位宽数字的神经网络近似使用了浮点数的神经网络的过程。

同济大学机构
暂无评论
暂无评论~