腾讯天衍实验室夺世界机器人大赛双冠军,新算法突破BCI瓶颈

日前,“2020世界机器人大赛-BCI脑控机器人大赛”公布成绩,腾讯天衍实验室和天津大学高忠科教授团队组成的C2Mind战队,经过多轮赛程的激烈比拼,实力入围BCI脑控机器人大赛“运动想象范式”赛题决赛,最终成功斩获技术赛“颞叶脑机组”一等奖,以及技术锦标赛“颞叶脑机有训练集一等奖”两项冠军。

世界机器人大赛在业内被誉为机器人界的“奥林匹克”,是目前国内外影响广泛的机器人领域官方专业赛事,自2015年起已成功举办五届,共吸引了全球20余个国家12万余名选手参赛。BCI脑控机器人大赛作为世界机器人大赛中一项高精尖科研类赛事已成功举办三届,此项竞赛内容重点考察脑-机接口技术在医疗康复等领域的创新应用技术成果,旨在推动该技术与各领域产业交流合作,满足人们对医疗、养老、助残、康复等多样化的民生需求,实现该领域与各行业的跨越融合发展。

运动想象新算法突破脑-机接口技术瓶颈

BCI(Brain-computer interface ,脑-机接口)是指通过对神经系统电活动和特征信号的收集、识别及转化,使人脑发出的指令能够直接传递给指定的机器终端,从而使人对机器人的控制和操作更为高效便捷,俗称“脑控”。该项技术是一项融合了神经科学人工智能的一门新兴技术,在人与机器人的交流沟通领域有着重大创新意义和使用价值,其已广泛应用于助残康复、灾害救援、娱乐体验等多个领域。

作为集科技性、创新性、实用性于一体的世界级BCI赛事,本届大赛上也诞生了诸多脑-机接口领域突破性技术成果。由天津大学和腾讯天衍实验室组成的C2Mind战队,从运动想象(Motor imagery ,MI)路径入手。这是一种非常重要的BCI范式,指没有任何肢体运动的情况下,利用意念想象肢体运动,是一种自发性脑电。但是,由于脑电信号的不稳定性,以及不同受试者脑电信号差异较大,甚至同一受试者在不同时间段采集的脑电信号都会存在较大差异,这使得脑机接口技术在使用前均需较长的校准时间,且系统性能不稳定,这些问题均严重影响了脑机接口技术运动想象范式在实际医疗场景中的应用。

针对运动想象脑电信号的时间差异性,腾讯天衍实验室提出基于动态域自适应的深度脑电解码模型研究运动想象算法的腾讯天衍实验室高级研究员柳露艳介绍,针对脑电信号数据差异大,且数据集样本量少,而导致训练困难及训练模型泛化性能差等问题,腾讯天衍实验室和天津大学高忠科教授团队,联合提出了一种创新的运动想象脑电信号分类方法。该方法首先通过将同类样本的时频图进行叠加的方式进行数据预处理,这样在保证扩充数据多样性的同时,又保持了原始数据时频特性,同时还增加了模型在不同受试者或者同一受试者不同时间点脑电信号上的泛化性能; 其次使用了基于GAN的领域自适应算法进一步加强了模型在不同脑电信号上的泛化性能。使用该算法训练的轻量级卷积神经网络(Convolutional neural network ,CNN)模型,具有更强的鲁棒性和泛化性能。

小样本学习技术化解训练样本缺乏难题

在技术算法直接应用于实际数据时,大多数情况下无法获得理想结果。因为实际数据往往分布的很不均匀,且存在训练数据缺乏、算法跨中心泛化能力差、算法准确度要求高等问题,尤其在严谨的医疗场景实际应用中,这些问题则成了技术精进的“拦路虎”。

柳露艳还介绍,腾讯天衍实验室运动想象团队基于其在医学领域的长期技术积淀和创新探索,针对以上行业性问题提出了解决方案,即采用小样本、领域自适应、元学习等技术解决训练样本缺乏、数据分布差异大等普遍存在的难题,从小样本数据集中学习出鲁棒的、高精度的脑电信号分类模型,不仅有助于提升运动想象下的脑-机接口系统的精度和泛化性,而且为脑机接口技术的应用奠定良好的技术基础。

运动想象算法应用场景广泛

运动想象脑电信号在医疗场景中的应用是非常广泛的,如对于感觉运动皮层相关部位受损的中风病人,脑机接口可以从受损的皮层区采集信号,然后刺激肌肉或控制矫形器,改善手臂运动。因癫痫病人的大脑会出现某个区域的神经元异常放电,而通过脑机接口技术检测到神经元异常放电后,可以对大脑进行相应的电刺激,从而减少癫痫发作。

同时,运动想象脑机接口在针对自闭症儿童的康复训练中也承担着重要的角色。与正常儿童相比,自闭症儿童在观看他人运动情景时模仿动机弱,相应的感觉运动皮层激活程度较低。通过让这些儿童参与基于自身感觉运动皮层激活程度强弱实时反馈的游戏项目,可以提升他们对感觉运动皮层激活程度的自我控制能力,从而改善自闭症的症状。

腾讯天衍实验室提出的运动想象创新算法,有望从准确性、效率、实用性、创新性、技术性等多维度提高脑-技接口技术在助残康复等多领域的技术应用与产业发展,为突破当前人类与机器、人类与环境的交互技术中存在的难题提供了一个可行的解决方案。这项算法可以通过嵌入到不同的硬件系统或者软件系统,为受试者实现意念传输和控制。比如,它和外骨骼机器人结合的BCI系统,可用于偏瘫、脑卒中患者运动功能的主动式康复;和电动轮椅结合的BCI系统,有望帮助肢体行动不便的人群自由活动出行等等。希望在不久的将来,可以看到这项技术帮助越来越多的残障人士突破肉体和工具的局限。

产业腾讯天衍实验室
相关数据
人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

神经科学技术

神经科学,又称神经生物学,是专门研究神经系统的结构、功能、发育、演化、遗传学、生物化学、生理学、药理学及病理学的一门科学。对行为及学习的研究都是神经科学的分支。 对人脑研究是个跨领域的范畴,当中涉及分子层面、细胞层面、神经小组、大型神经系统,如视觉神经系统、脑干、脑皮层。

元学习技术

元学习是机器学习的一个子领域,是将自动学习算法应用于机器学习实验的元数据上。现在的 AI 系统可以通过大量时间和经验从头学习一项复杂技能。但是,我们如果想使智能体掌握多种技能、适应多种环境,则不应该从头开始在每一个环境中训练每一项技能,而是需要智能体通过对以往经验的再利用来学习如何学习多项新任务,因此我们不应该独立地训练每一个新任务。这种学习如何学习的方法,又叫元学习(meta-learning),是通往可持续学习多项新任务的多面智能体的必经之路。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

腾讯机构

腾讯,1998年11月诞生于中国深圳,是一家以互联网为基础的科技与文化公司。我们的使命是“通过互联网服务提升人类生活品质”。腾讯秉承着 “一切以用户价值为依归”的经营理念,为亿万网民提供优质的互联网综合服务。 腾讯的战略目标是“连接一切”,我们长期致力于社交平台与数字内容两大核心业务:一方面通过微信与QQ等社交平台,实现人与人、服务及设备的智慧连接;另一方面为数以亿计的用户提供优质的新闻、视频、游戏、音乐、文学、动漫、影业等数字内容产品及相关服务。我们还积极推动金融科技的发展,通过普及移动支付等技术能力,为智慧交通、智慧零售、智慧城市等领域提供有力支持。 腾讯希望成为各行各业的数字化助手,助力数字中国建设。在工业、医疗、零售、教育等各个领域,腾讯为传统行业的数字化转型升级提供“数字接口”和“数字工具箱”。我们秉持数字工匠精神,希望用数字创新提升每个人的生活品质。随着“互联网+”战略实施和数字经济的发展,我们通过战略合作与开放平台,与合作伙伴共建数字生态共同体,推进云计算、大数据、人工智能等前沿科技与各行各业的融合发展及创新共赢。多年来,腾讯的开放生态带动社会创业就业人次达数千万,相关创业企业估值已达数千亿元。 腾讯的愿景是成为“最受尊敬的互联网企业”。我们始终坚守“科技向善”的初心,运用科技手段助力公益事业发展,并将社会责任融入每一个产品。2007年,腾讯倡导并发起了中国互联网第一家在民政部注册的全国性非公募基金会——腾讯公益慈善基金会。腾讯公益致力于成为“人人可公益的创连者”,以互联网核心能力推动公益行业的长远发展为己任。腾讯公益联合多方发起了中国首个互联网公益日——99公益日,帮助公益组织和广大爱心网友、企业之间形成良好的公益生态,让透明化的“指尖公益”融入亿万网民的生活。

http://www.tencent.com/
小样本学习技术

人类非常擅长通过极少量的样本识别一个新物体,比如小孩子只需要书中的一些图片就可以认识什么是“斑马”,什么是“犀牛”。在人类的快速学习能力的启发下,研究人员希望机器学习模型在学习了一定类别的大量数据后,对于新的类别,只需要少量的样本就能快速学习,这就是 Few-shot Learning 要解决的问题。

推荐文章
暂无评论
暂无评论~