图像合成是指组合不同图像中的部分区域以合成一张新的图像,一个常见的用例是肖像图片的背景替换。为了获得高质量的合成图像,经常需要专业人员手动执行多个编辑步骤,例如图像分割、抠图、前景色彩去污,即使使用复杂的图像编辑工具,这些步骤也是非常耗时的。

Auto Byte
专注未来出行及智能汽车科技
微信扫一扫获取更多资讯
Science AI
关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展
微信扫一扫获取更多资讯
没有用户输入,也能生成高质量的合成图像吗?
图像合成是指组合不同图像中的部分区域以合成一张新的图像,一个常见的用例是肖像图片的背景替换。为了获得高质量的合成图像,经常需要专业人员手动执行多个编辑步骤,例如图像分割、抠图、前景色彩去污,即使使用复杂的图像编辑工具,这些步骤也是非常耗时的。
深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。
图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。从数学角度来看,图像分割是将数字图像划分成互不相交的区域的过程。图像分割的过程也是一个标记过程,即把属于同一区域的像索赋予相同的编号。
二值化是将像素图像转换为二进制图像的过程。
知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。