参与张倩 陈萍

Photoshop把AI论文demo打包实现了:照片上色、改年龄、换表情只需要点点鼠标

我们见过很多神经网络上色、换表情、修改年龄的研究和应用,但它们往往只存在于 GitHub 上,距离「人人能用」还有一段距离。但最近,推出 Photoshop 的 Adobe 这次终于有所表示了:你们论文里的效果,我们打包实现了。

这两年,我们从很多论文中看到过一些令人惊艳的 demo,比如老照片自动上色、低画质图像秒变高清图像、普通图像一键变梵高风格等。

但对于不写代码、不玩模型的普通人来说,这些 demo 展示的应用还是非常遥远,或者只能从某个 APP 中找到其中一种。因此,经常有人会问:「我也想用这个 demo 里的效果,但不懂代码,我还有机会吗?」

先说答案:有。

这个答案来自大名鼎鼎的 Adobe。这家极富创意的公司最近在 Photoshop 22.0 版更新中推出了一个新的工具包——Neural Filters,把自动上色、超分辨率、风格迁移等之前很多论文展示的功能都打包到了一起。

先来看自动上色:

可以看到,整个过程能够一键完成。当然,如果你对某一处的上色效果不满意,可以选择手动调整:

其实,局部上色效果不佳是目前很多算法存在的共性问题,Photoshop 这种「自动 + 手动」的方法似乎更加灵活。

日常生活中的照片也经常存在分辨率不够高或被压成 JPEG 格式后画质变差的情况,而在 Neural Filters 中,这个问题也通过添加细节被克服了:

这波修复操作包括「增强图像细节」、「消除 JPEG 伪影」和「降噪」。

其他特色功能还包括风格迁移、年龄转换、角度变换、深度感知等:

有了这个滤镜,人人都是梵高。

笑着笑着就老了。

拍照爱歪头的同学有救了。

在表情调整方面,Neural Filters 也做出了改进。与之前 Liquify 使用原像素调整表情不同,Neural Filters 可以生成新的像素,使得调整后的表情更加明显,可调幅度更大。

看完这些效果之后,不少网友表示:「心动了」,「买正版有动力了」。

Adobe 官方页面介绍称,Neural Filters 是一款基于 Adobe Sensei 的机器学习工具包,通过生成原始图像中不存在的上下文像素来调整图像。

Adobe Sensei 并非一款单独的软件产品,而是一个可以应用于 Adobe 旗下各款产品的底层人工智能工具,于 2016 年正式发布。Sensei 利用了 Adobe 长期积累下来的大量数据和内容,从图片到影像,能够帮助人们解决在媒体素材创意过程中面临的一系列问题,例如如何在互联网上的海量图库里找到想要的图片,让软件明白某张照片、某张照片的一部分、某段视频以及某段文本描述的真实含义,帮助人们把一些固定、重复性的操作变得自动化和简单化。

这么强大的功能是在本地还是云端实现的呢?Adobe 介绍说,除了 Depth-Aware Haze 之外,Neural Filters 的大部分功能都是在本地运行的。表情、年龄调整等比较复杂的操作有些会在云端进行。

在使用这些功能时,软件会优先选择调用你的 GPU,如果没有高性能 GPU 就调用 CPU,但高性能的 GPU 不是必需的。

Neural Filters 怎么用

Neural Filters 的使用非常简单。首先,你需要从云端下载 filters 并开始编辑。点击 Filters > Neural Filters,你可以在 Neural Filters 工作区中找到 featured  filters 和 beta filters。

具体来说,第一次使用需要完成以下三个步骤:

1. 选择 Filter > Neural Filters

2. 从云端下载所需的 filters

任何在其旁边显示有云图标的 filters 在第一次使用前都需要从云端下载。点击云图标下载 filter。


3. 启动和调整 filter

启用 filter,用右侧面板中的选项来创建所需的效果。

Filter 类型

Neural Filters 有 3 种类型的应用:

  • 功能齐全的应用:这些是已发布的 filters,符合严格标准。

  • Beta:这类 filters 仅限于测试,其背后的机器学习模型或工作流程还在改进中。你可以试用这些功能,但输出效果可能不理想。

  • 即将到来的 Filters:这类 filters 还没开发出来,但将来或许能实现。


注意:如果在图像中没有检测到人脸,肖像相关 filters 将会变灰。

输出选项

你可以通过以下其中一种方式将生成的编辑内容另存为输出:

  • Current Layer:生成像素来修补当前层的破坏性操作。

  • Duplicate Layer:复制当前层,并将新的 filters 应用到新层。

  • Duplicate Layer masked:创建一个新层,并将 filters 用作新层的一个 mask。

  • New Layer:仅用新生成的像素生成一个新层。

  • Smart Filter:生成新的像素并将其作为一个智能 filter 应用。


有了 Neural Filters,PS 一张图再也不需要太多专业知识了,Neural Filters 会改变世界吗?

「有了神经网络滤镜,我们终于可以说 Photoshop 是全球最先进的 AI 应用了,」Adobe 数字成像副总裁 Maria Yap 说道。「现在,我们正在创造的图像是前所未有的。」

参考链接:https://helpx.adobe.com/photoshop/using/neural-filters-list-and-faq.html
产业GANPhotoshopAdobe
相关数据
神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

推荐文章
暂无评论
暂无评论~