蛋酱作者

吴恩达Deeplearning.ai国庆节上新:生成对抗网络(GAN)专项课程

Coursera 刚刚上新了 GAN 的专项课程,或许在这个国庆假期,你应该学习一波了。


生成对抗网络(Generative Adversarial Network,GAN)是当前功能最强大的机器学习模型之一,其能够生成逼真的图像、视频和语音输出结果。基于 GAN 的应用十分广泛,比如防御对抗攻击和数据匿名化来保护隐私,以提升网络安全性,再比如生成新图像,为黑白图像着色、提高图像分辨率、2D 图像转 3D 等技术。

随着算力的增强,GAN 的普及程度和功能也不断提升,开启了许多新的方向:比如生成大量数据用来训练模型,让无监督模型生成更加清晰、准确的输出图像,同时也为相近研究领域提供了对抗学习、对抗样本、模型鲁棒性等方面的启示。


近日,DeepLearning.AI 推出了《生成对抗网络(GAN)专项课程》,系统介绍了使用 GAN 生成图像的理论及方法。此外还包括机器学习偏见、隐私保护等社会影响话题的讨论。


这门课程适用于对机器学习感兴趣并希望了解 GAN 的工作原理的软件工程师、学生和研究者。专项课程内容尽可能做到通俗易懂,让进入课程的人都真正理解 GAN 并学会使用。

但在进入这门课程之前,学习者应该具备关于深度学习卷积神经网络的知识,具备一定的 Python 技能和深度学习框架(TensorFlow、Keras、PyTorch)的使用经验,且精通微积分线性代数、统计学。

课程内容

本次专项课程总共分为三节:

课程 1:Build Basic Generative Adversarial Networks (GANs)


这一节的内容包括 GAN 的基本知识、使用 PyTorch 构建最基本的 GAN 模型,以及使用卷基层构建 DCGAN 来处理图像、使用损失函数解决梯度消失问题,并学习如何控制 GAN 和构建有条件 GAN。

课程 2:Build Better Generative Adversarial Networks (GANs)

这一节将介绍 GAN 模型现存的挑战,通过对比不同的生成模型,使用 Fréchet Inception Distance(FID)来评估 GAN 的保真度和多样性,辨别偏见的来源、在 GAN 中检测偏见的方法,以及学习 StyleGAN 的相关技术。

课程 3:Apply Generative Adversarial Networks (GANs)


这一节将学习如何使用 GAN 进行数据增强和隐私保护,并熟悉 GAN 的更多应用类型,以及构建 Pix2Pix、CycleGAN 以实现图像转换功能。

讲师介绍


这门课程的授课讲师是吴恩达的博士生 Sharon Zhou,她的研究领域涵盖医学、气候和更广泛的社会公益领域。Sharon Zhou2015 年毕业于哈佛大学,获得古典文学和计算机科学联合学位,并在谷歌等多家公司担任机器学习方面的产品经理职位。

与其他专项课程一样,这门课程也包括实践项目,需要完成一些项目才能结束专项课程并获得证书。如果专项课程中包括单独的实践项目课程,则需要在开始之前完成其他所有课程。只想阅读和查看课程内容的话,该课程提供免费旁听的机会。

入门Deeplearning.aiGAN吴恩达
相关数据
吴恩达人物

斯坦福大学教授,人工智能著名学者,机器学习教育者。2011年,吴恩达在谷歌创建了谷歌大脑项目,以通过分布式集群计算机开发超大规模的人工神经网络。2014年5月16日,吴恩达加入百度,负责“百度大脑”计划,并担任百度公司首席科学家。2017年3月20日,吴恩达宣布从百度辞职。2017年12月,吴恩达宣布成立人工智能公司Landing.ai,并担任公司的首席执行官。2018年1月,吴恩达成立了投资机构AI Fund。

所属机构
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

图像转换技术

图像到图像的转换是从一个域获取图像并对其进行转换以使它们具有来自另一个域的图像的样式(或特征)的任务。

TensorFlow技术

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

对抗样本技术

对抗样本是一类被设计来混淆机器学习器的样本,它们看上去与真实样本的几乎相同(无法用肉眼分辨),但其中噪声的加入却会导致机器学习模型做出错误的分类判断。

梯度消失问题技术

梯度消失指的是随着网络深度增加,参数的梯度范数指数式减小的现象。梯度很小,意味着参数的变化很缓慢,从而使得学习过程停滞,直到梯度变得足够大,而这通常需要指数量级的时间。这种思想至少可以追溯到 Bengio 等人 1994 年的论文:「Learning long-term dependencies with gradient descent is difficult」,目前似乎仍然是人们对深度神经网络的训练困难的偏好解释。

微积分技术

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法 。

线性代数技术

线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

CycleGAN技术

GAN的一个变种

生成模型技术

在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下。 它给观测值和标注数据序列指定一个联合概率分布。 在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。

生成对抗网络技术

生成对抗网络是一种无监督学习方法,是一种通过用对抗网络来训练生成模型的架构。它由两个网络组成:用来拟合数据分布的生成网络G,和用来判断输入是否“真实”的判别网络D。在训练过程中,生成网络-G通过接受一个随机的噪声来尽量模仿训练集中的真实图片去“欺骗”D,而D则尽可能的分辨真实数据和生成网络的输出,从而形成两个网络的博弈过程。理想的情况下,博弈的结果会得到一个可以“以假乱真”的生成模型。

生成对抗技术

生成对抗是训练生成对抗网络时,两个神经网络相互博弈的过程。两个网络相互对抗、不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真实。

推荐文章
暂无评论
暂无评论~