Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

蛋酱编辑

深度学习准「研究僧」预习资料:图灵奖得主Yann LeCun《深度学习(Pytorch)》春季课程

开学进入倒计时,深度学习方向的准「研究僧」们,你们准备好了吗?

转眼 2020 年已经过半,又一届深度学习方向的准研究生即将踏上「炼丹」之路。对于这一方向的新生来说,提前了解、学习这一专业领域的知识,会让研究生涯有一个更加顺畅的开端。

以往,机器之心曾经介绍过很多入门课程:


列出的这些课程仅是冰山一角。几年下来,我们积攒了成百上千的教程资料,从基本概念到深度解析,从语言到框架,从读博到就业…… 既有理论,也有实战;既有精华文章,也有视频、教科书、笔记,全都收录在这几份教程盘点文章之中:


今天要介绍的是一份比较适合入门深度学习的课程:纽约大学数据科学中心《深度学习(Pytorch)》2020 春季课程。


课程网站:https://atcold.github.io/pytorch-Deep-Learning/

这门课程由图灵奖得主、纽约大学 Sliver 教授 Yann LeCun 主讲,课程主要涉及深度学习表征学习的最新技术及其在计算机视觉自然语言理解语音识别方面的应用,重点包括监督深度学习、无监督深度学习、嵌入方法、度量学习、卷积和递归网络等。



在学习这门课程之前,你需要对数据科学机器学习有一定程度的了解,你可以先完成 DS-GA 1001 数据科学入门,或者学习一门研究生级别的机器学习课程。

深度学习(Pytorch)》系列课程自开设以来,已经成为该领域的明星课程,迄今 GitHub 主页获得了 2.6k 的 star 量。

课程目录

课程总长度为 11 周,在两个多月的时间里,你将掌握这几项内容:

  • 监督学习神经网络深度学习基础

  • 反向传播及架构组件

  • 卷积神经网络及其应用

  • 更多深度学习架构

  • 正则化技巧 / 优化技巧 / 理解深度学习的工作原理

  • 基于能量的模型

  • 监督学习和其他


课程进度如下:



每一部分都有着详细的课程介绍,并且纲要内容已经翻译成了包括中文在内的 6 种语言,毫无阅读障碍。

目前,所有课程视频资源也已放出,你可以在该课程另一位主讲人 Alfredo Canziani 的 YouTube 主页找到播放列表:https://www.youtube.com/playlist?list=PLLHTzKZzVU9eaEyErdV26ikyolxOsz6mq


时间不早了,距离正式开学还有十几天,你的学习计划启动了吗?

入门Yann LeCun深度学习PyTorch
2
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

深度强化学习技术

强化学习(Reinforcement Learning)是主体(agent)通过与周围环境的交互来进行学习。强化学习主体(RL agent)每采取一次动作(action)就会得到一个相应的数值奖励(numerical reward),这个奖励表示此次动作的好坏。通过与环境的交互,综合考虑过去的经验(exploitation)和未知的探索(exploration),强化学习主体通过试错的方式(trial and error)学会如何采取下一步的动作,而无需人类显性地告诉它该采取哪个动作。强化学习主体的目标是学习通过执行一系列的动作来最大化累积的奖励(accumulated reward)。 一般来说,真实世界中的强化学习问题包括巨大的状态空间(state spaces)和动作空间(action spaces),传统的强化学习方法会受限于维数灾难(curse of dimensionality)。借助于深度学习中的神经网络,强化学习主体可以直接从原始输入数据(如游戏图像)中提取和学习特征知识,然后根据提取出的特征信息再利用传统的强化学习算法(如TD Learning,SARSA,Q-Learnin)学习控制策略(如游戏策略),而无需人工提取或启发式学习特征。这种结合了深度学习的强化学习方法称为深度强化学习。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

自然语言理解技术

自然语言理解是人工智能的核心课题之一,也被广泛认为是最困难和最具标志性的任务。最经典的两个人工智能思想实验——图灵测试和中文房间,都是围绕自然语言理解来构建的。自然语言理解在人工智能技术体系中的重要性不言而喻,它一方面承载着机器和人的交流,另一方面直达知识和逻辑。自然语言理解也是人工智能学者孜孜以求的圣杯,机器学习的巨擘 Michael I. Jordan 就曾经在 Reddit 上的 AMA(Ask Me Anything)栏目中畅想用十亿美元建立一个专门用于自然语言理解的实验室。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

数据科学技术

数据科学,又称资料科学,是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。数据科学通过运用各种相关的数据来帮助非专业人士理解问题。

表征学习技术

在机器学习领域,表征学习(或特征学习)是一种将原始数据转换成为能够被机器学习有效开发的一种技术的集合。在特征学习算法出现之前,机器学习研究人员需要利用手动特征工程(manual feature learning)等技术从原始数据的领域知识(domain knowledge)建立特征,然后再部署相关的机器学习算法。虽然手动特征工程对于应用机器学习很有效,但它同时也是很困难、很昂贵、很耗时、并依赖于强大专业知识。特征学习弥补了这一点,它使得机器不仅能学习到数据的特征,并能利用这些特征来完成一个具体的任务。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

度量学习技术

即学习一个度量空间,在该空间中的学习异常高效,这种方法多用于小样本分类。直观来看,如果我们的目标是从少量样本图像中学习,那么一个简单的方法就是对比你想进行分类的图像和已有的样本图像。但是,正如你可能想到的那样,在像素空间里进行图像对比的效果并不好。不过,你可以训练一个 Siamese 网络或在学习的度量空间里进行图像对比。与前一个方法类似,元学习通过梯度下降(或者其他神经网络优化器)来进行,而学习者对应对比机制,即在元学习度量空间里对比最近邻。这些方法用于小样本分类时效果很好,不过度量学习方法的效果尚未在回归或强化学习等其他元学习领域中验证。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

监督学习技术

监督式学习(Supervised learning),是机器学习中的一个方法,可以由标记好的训练集中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。训练集是由一系列的训练范例组成,每个训练范例则由输入对象(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

语音识别技术

自动语音识别是一种将口头语音转换为实时可读文本的技术。自动语音识别也称为语音识别(Speech Recognition)或计算机语音识别(Computer Speech Recognition)。自动语音识别是一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处理理论、信息论、计算机科学等众多学科紧密相连。由于语音信号的多样性和复杂性,目前的语音识别系统只能在一定的限制条件下获得满意的性能,或者说只能应用于某些特定的场合。自动语音识别在人工智能领域占据着极其重要的位置。

正则化技术

当模型的复杂度增大时,训练误差会逐渐减小并趋向于0;而测试误差会先减小,达到最小值后又增大。当选择的模型复杂度过大时,过拟合现象就会发生。这样,在学习时就要防止过拟合。进行最优模型的选择,即选择复杂度适当的模型,以达到使测试误差最小的学习目的。

机器之心机构

机器之心,成立于2014年,是国内最具影响力、最专业、唯一用于国际品牌的人工智能信息服务与产业服务平台。目前机器之心已经建立起涵盖媒体、数据、活动、研究及咨询、线下物理空间于一体的业务体系,为各类人工智能从业者提供综合信息服务和产业服务。

https://www.jiqizhixin.com/
自监督学习技术

一个例子中的内容特别多,而用一个例子做一个任务,就等于把其他的内容浪费了,因此我们需要从一个样本中找出多个任务。比如说遮挡图片的一个特定部分,用没遮挡部分来猜遮挡的部分是一个任务。那么通过遮挡不同的部分,就可以用一个样本完成不同任务。Yann Lecun描述的这个方法被业界称作「自监督学习」

推荐文章
暂无评论
暂无评论~