小舟、杜伟报道

22课时、19大主题,CS 231n进阶版课程视频上线

讲 CS231n 的 Justin Johnson 在密歇根大学推出了一套计算机视觉的进阶课程。

计算机视觉在日常生活中已经无处不在。从搜索引擎、图像理解、地图、医疗、无人机、自动驾驶到各类手机 app,都离不开计算机视觉。这些应用中有许多像图像分类目标检测这样的视觉识别任务,而神经网络方面的进展大大提高了视觉识别系统的性能。

来自密歇根大学的 Justin Johnson 在 2019 年秋季推出了一套新的课程,该课程深入探讨了基于神经网络计算机视觉深度学习方法的细节。这一课程近日已在 YouTube 上开放

课程视频链接:https://www.youtube.com/playlist?list=PL5-TkQAfAZFbzxjBHtzdVCWE0Zbhomg7r

课程概况

这套 2019 年秋季的计算机视觉课程名为「Deep Learning for Computer Vision」,课程讲授者是来自密歇根大学的 Justin Johnson。作为斯坦福大学李飞飞教授的学生,Justin Johnson 曾和李飞飞一起讲授斯坦福大学计算机视觉经典课程 CS231n。

Justin Johnson,图源:https://web.eecs.umich.edu/~justincj/。

目前,Justin Johnson 正在密歇根大学担任助理教授,同时他也是 Facebook AI 研究所的客座科学家。他的研究兴趣主要是计算机视觉机器学习,研究涉及视觉推理、视觉和语言、图像生成以及使用深度神经网络的 3D 推理。

在「Deep Learning for Computer Vision」课程中,学生可以学习到实现、训练和调试自己的神经网络,并能够详细了解计算机视觉前沿研究的知识。课程中介绍了学习算法、神经网络架构以及用于训练和微调视觉识别任务网络的实用工程技巧。

22 个课时、19 个主题、历时 3 个多月

密歇根大学 2019 秋季「Deep Learning for Computer Vision」课程历时 3 个多月,共计 22 个课时,19 个主题。

  • 课时 1:计算机视觉深度学习简介,包括历史背景和当前发展概述;

  • 课时 2:图像分类,包括数据驱动方法、最近邻算法、超参数和交叉验证

  • 课时 3:线性分类器,包括 Softmax 或 SVM 分类器和 L2 正则化

  • 课时 4:优化,包括随机梯度下降动量、AdaGrad、Adam 和二阶优化器;

  • 课时 5:神经网络,包括特征转换、全连接网络、泛逼近(universal approximation )和凸性。

  • 课时 6:反向传播,包括计算图、反向传播和矩阵乘法示例;

  • 课时 7:卷积网络,包括卷积、池化批归一化

  • 课时 8:CNN 架构,包括 AlexNet、VGG、ResNet、大小 VS 准确性、分组和可分离卷积以及神经架构搜索;

  • 课时 9:硬件和软件,包括 CPU、GPU、TPU、动态与静态图以及 PyTorch 和 TensorFlow

  • 课时 10:神经网络训练 I,包括激活函数、数据预处理、权重初始化、数据增广和正则化Dropout 等);

  • 课时 11:神经网络训练 II,包括学习率方案、超参数优化、模型集成、迁移学习和大批量训练;

  • 课时 12:递归网络,包括 RNN、LSTM、GRU、语言建模、序列到序列、图像标注和视觉问题;

  • 课时 13:注意力,包括多模态注意力、自注意力和 Transformers;

  • 课时 14:可视化和理解,包括特征可视化、对抗性示例以及 DeepDream 和风格迁移;

  • 课时 15:目标检测,包括单级检测器和两级检测器;

  • 课时 16:图像分割,包括语义分割实例分割和关键点估计;

  • 课时 17:3D 视觉,包括 3D 形状表示、深度估计、3D 形状预测以及立体像素、点云、SDF 和网格;

  • 课时 18:视频,包括视频分类、早期和后期融合、3D CNN 和双流网络;

  • 课时 19:生成模型 I,包括监督与无监督学习、判别与生成模型自回归模型变分自编码器

  • 课时 20:生成模型 II,包括变分更强的自编码器和生成对抗网络

  • 课时 21:强化学习,包括强化学习问题设置、贝尔曼方程、Q 学习和策略梯度;

  • 课时 22:课程总结,包括课程回顾和计算机视觉的发展展望。

对课程主题感兴趣的小伙伴赶快去观看视频了!

参考链接:

https://web.eecs.umich.edu/~justincj/

https://web.eecs.umich.edu/~justincj/teaching/eecs498/schedule.html

入门计算机视觉深度学习助理教授Justin Johnson密歇根大学
11
相关数据
李飞飞人物

李飞飞,斯坦福大学计算机科学系教授,斯坦福视觉实验室负责人,斯坦福大学人工智能实验室(SAIL)前负责人。专业领域是计算机视觉和认知神经科学。2016年11月李飞飞加入谷歌,担任谷歌云AI/ML首席科学家。2018年9月,返回斯坦福任教,现为谷歌云AI/ML顾问。10月20日斯坦福大学「以人为中心的AI计划」开启,李飞飞担任联合负责人。11月20日李飞飞不再担任SAIL负责人,Christopher Manning接任该职位。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

线性分类器技术

机器学习通过使用对象的特征来识别它所属的类(或组)来进行统计分类。线性分类器通过基于特征的线性组合的值进行分类决策。 对象的特征也称为特征值,通常在称为特征向量的向量中呈现给机器。

图像分割技术

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。从数学角度来看,图像分割是将数字图像划分成互不相交的区域的过程。图像分割的过程也是一个标记过程,即把属于同一区域的像索赋予相同的编号。

池化技术

池化(Pooling)是卷积神经网络中的一个重要的概念,它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效的原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合。通常来说,CNN的卷积层之间都会周期性地插入池化层。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

Dropout技术

神经网络训练中防止过拟合的一种技术

VGG技术

2014年,牛津大学提出了另一种深度卷积网络VGG-Net,它相比于AlexNet有更小的卷积核和更深的层级。AlexNet前面几层用了11×11和5×5的卷积核以在图像上获取更大的感受野,而VGG采用更小的卷积核与更深的网络提升参数效率。VGG-Net 的泛化性能较好,常用于图像特征的抽取目标检测候选框生成等。VGG最大的问题就在于参数数量,VGG-19基本上是参数量最多的卷积网络架构。VGG-Net的参数主要出现在后面两个全连接层,每一层都有4096个神经元,可想而至这之间的参数会有多么庞大。

变分自编码器技术

变分自编码器可用于对先验数据分布进行建模。从名字上就可以看出,它包括两部分:编码器和解码器。编码器将数据分布的高级特征映射到数据的低级表征,低级表征叫作本征向量(latent vector)。解码器吸收数据的低级表征,然后输出同样数据的高级表征。变分编码器是自动编码器的升级版本,其结构跟自动编码器是类似的,也由编码器和解码器构成。在自动编码器中,需要输入一张图片,然后将一张图片编码之后得到一个隐含向量,这比原始方法的随机取一个随机噪声更好,因为这包含着原图片的信息,然后隐含向量解码得到与原图片对应的照片。但是这样其实并不能任意生成图片,因为没有办法自己去构造隐藏向量,所以它需要通过一张图片输入编码才知道得到的隐含向量是什么,这时就可以通过变分自动编码器来解决这个问题。解决办法就是在编码过程给它增加一些限制,迫使其生成的隐含向量能够粗略的遵循一个标准正态分布,这就是其与一般的自动编码器最大的不同。这样生成一张新图片就比较容易,只需要给它一个标准正态分布的随机隐含向量,这样通过解码器就能够生成想要的图片,而不需要给它一张原始图片先编码。

超参数优化技术

自注意力技术

自注意力(Self-attention),有时也称为内部注意力,它是一种涉及单序列不同位置的注意力机制,并能计算序列的表征。自注意力在多种任务中都有非常成功的应用,例如阅读理解、摘要概括、文字蕴含和语句表征等。自注意力这种在序列内部执行 Attention 的方法可以视为搜索序列内部的隐藏关系,这种内部关系对于翻译以及序列任务的性能非常重要。

TensorFlow技术

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

随机梯度下降技术

梯度下降(Gradient Descent)是遵循成本函数的梯度来最小化一个函数的过程。这个过程涉及到对成本形式以及其衍生形式的认知,使得我们可以从已知的给定点朝既定方向移动。比如向下朝最小值移动。 在机器学习中,我们可以利用随机梯度下降的方法来最小化训练模型中的误差,即每次迭代时完成一次评估和更新。 这种优化算法的工作原理是模型每看到一个训练实例,就对其作出预测,并重复迭代该过程到一定的次数。这个流程可以用于找出能导致训练数据最小误差的模型的系数。

贝尔曼方程技术

“贝尔曼方程(Bellman Equation)”也被称作“动态规划方程(Dynamic Programming Equation)”,由理查·贝尔曼(Richard Bellman)发现。贝尔曼方程是动态规划(Dynamic Programming)这种数学最佳化方法能够达到最佳化的必要条件。此方程将“决策问题在特定时间点的值”以“来自初始选择的报酬 及 由初始选择衍生的决策问题的值”的形式表示。藉这个方式将动态最佳化问题变成较简单的子问题,而这些子问题遵守由贝尔曼所提出的“最佳化原理”。

迁移学习技术

迁移学习是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题。 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴。

图像生成技术

图像生成(合成)是从现有数据集生成新图像的任务。

正则化技术

当模型的复杂度增大时,训练误差会逐渐减小并趋向于0;而测试误差会先减小,达到最小值后又增大。当选择的模型复杂度过大时,过拟合现象就会发生。这样,在学习时就要防止过拟合。进行最优模型的选择,即选择复杂度适当的模型,以达到使测试误差最小的学习目的。

特征可视化技术

用于解决神经网络广受诟病的黑箱问题的方法之一,通过可视化的方法来理解神经网络的运算机理,以解决可解释性问题。

语义分割技术

语义分割,简单来说就是给定一张图片,对图片中的每一个像素点进行分类。图像语义分割是AI领域中一个重要的分支,是机器视觉技术中关于图像理解的重要一环。

动量技术

优化器的一种,是模拟物理里动量的概念,其在相关方向可以加速SGD,抑制振荡,从而加快收敛

生成模型技术

在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下。 它给观测值和标注数据序列指定一个联合概率分布。 在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。

序列到序列技术

生成对抗网络技术

生成对抗网络是一种无监督学习方法,是一种通过用对抗网络来训练生成模型的架构。它由两个网络组成:用来拟合数据分布的生成网络G,和用来判断输入是否“真实”的判别网络D。在训练过程中,生成网络-G通过接受一个随机的噪声来尽量模仿训练集中的真实图片去“欺骗”D,而D则尽可能的分辨真实数据和生成网络的输出,从而形成两个网络的博弈过程。理想的情况下,博弈的结果会得到一个可以“以假乱真”的生成模型。

交叉验证技术

交叉验证,有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法。于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证。 一开始的子集被称为训练集。而其它的子集则被称为验证集或测试集。交叉验证的目标是定义一个数据集到“测试”的模型在训练阶段,以便减少像过拟合的问题,得到该模型将如何衍生到一个独立的数据集的提示。

自回归模型技术

自回归模型,是统计上一种处理时间序列的方法,自回归模型被广泛运用在经济学、资讯学、自然现象的预测上。

批归一化技术

批归一化(Batch Normalization,BN)由谷歌于2015年提出,是一个深度神经网络训练的技巧,它不仅可以加快模型的收敛速度,还能在一定程度上缓解深层网络中的“梯度弥散”问题,从而使得训练深层网络模型更加容易和稳定。目前BN已经成为几乎所有卷积神经网络的标配技巧了。从字面意思看来Batch Normalization(简称BN)就是对每一批数据进行归一化。

图像分类技术

图像分类,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

实例分割技术

实例分割是检测和描绘出现在图像中的每个不同目标物体的任务。

目标检测技术

一般目标检测(generic object detection)的目标是根据大量预定义的类别在自然图像中确定目标实例的位置,这是计算机视觉领域最基本和最有挑战性的问题之一。近些年兴起的深度学习技术是一种可从数据中直接学习特征表示的强大方法,并已经为一般目标检测领域带来了显著的突破性进展。

视频分类技术

视频分类指基于根据视频片段的语义内容(如人的动作或更复杂的活动)对视频片段进行自动标记。

推荐文章
京东・算法工程师
学习了