释放数据价值的「三个关键点」

数据的核心价值在于从经验决策迈向数据决策,快人半步地认知世界。

大数据行业经历了十余年的快速发展,正式进入数据智能化阶段,数据驱动决策,驱动业务发展的企业新需求,实现数据价值最大化。

「大数据」概念在国内从2010年兴起,至2012年真正火爆起来,早些年也有许多大数据相关的故事,后来虽被证实「啤酒纸尿裤」的故事是杜撰的,但它的数据分析成果早已成为数据智能应用的经典案例。

数据的核心价值在于从经验决策迈向数据决策,快人半步地认知世界。

数据智能对企业的价值

企业拥有数据不等同于能够解决问题,如何激活和释放数据价值则更为重要。
 我们在深耕数据智能应用之上,也为零售领域各行业客户数智化转型赋能,助推企业降本增效。

举个例子:

奇点云为某家居建设统一的客户标签体系,实现了:
 • 数据中台总数据量达到100T,客户数量达到3000万;• 新增有效客户标签200个以上;• 基于统一的算法标签实现客户精准投放,渠道投放成本每年节省500万元;• 基于精准营销,复购率比原来提升4%,营收比原来增加2亿元左右。

如何解决数据问题?

我们所有的企业在数字化转型走到今天,发现业务问题背后往往可能隐藏的为数众多的数据问题,如数据不通、数据不可用、数据变现等问题。

 那么,如何解决这些数据问题?
 数据问题不仅仅是数据本身的问题,奇点云基于中台建设思路,总结出了「盘、理、管、用」的数据方法论。盘清原始数据、理出数据资产、管妥数据资产、用出资产好价值。

  从数据用起来的角度,根据业务场景,看数据是否已被收集、治理,是否已变成数据资产价值,所以叫「盘理管用」。但从我们思考的维度则相反,我们要关注怎么去盘、怎么去理、怎么去管,以及最终怎么去用。核心目的是让数据发挥价值。

数据资产盘点

奇点云认为,企业的资源,包括组织(人)、业务(系统)、数据(资产),三种资源相互影响,形成良性的闭环,螺旋迭代优化,才能成为优质资产,驱动数据发挥价值。

数据资产治理

数据中台领域的数据治理六要素:标准定义、数据模型设计数据同步、数据清洗、数据建模、数据规范设计。

数据资产管理

数据资产:基于租户级别提供统一的数据管控体系,包括基本信息管理、数据血缘、数据操作、权限管理、生命周期、脏数据管理、类目管理。
数据资产应用全域数据:数据资产不仅仅是企业内部的数据资产,规划智能模型需要另外可使用的外部数据,包括交通、POI、商圈客流、天气、楼盘等,按需提供。
业务开放:开放数据API,赋能业务使用方。
经营决策:通过经营决策报表实时反映企业运行状态,助力企业管理者高效决策。
数据智能:是数据应用的最前沿,最终探索数据价值就是构建数据智能应用模型,采用深度学习等算法技术来实现数据智能应用模型,根据业务运行情况自动自我迭代。

如何最大化释放企业数据价值?

以上只是解决了数据平台层的各类问题,在数据应用层面,我们还需清楚如何释放数据背后的价值。
 大数据不等于数据分析,也不等于数据价值。早年业界流传着两种说法,第一种是数据流派,不看业务而是通过海量的数据发现数据背后潜在的规则;另一种是业务流派,通过业务痛点看所需的数据,再通过代码得以实现。两大流派各有特点,但从发现数据价值的角度看,数据和分析的价值还需进一步结合业务场景最终实现数据价值。

数据价值的三个关键点

1、数据资产

过「盘理管用」的方法论,把数据梳理成数据资产,是数据价值的基础,各类数据资产的模型、层次关系、关联关系。

2数据分析

通过各种数据分析的方法和算法技术,从数据中发现价值。

3、行业知识

引入行业知识,构建行业特有的经验模型,实现数据价值的最大化。
上图从数据价值的角度,最底层数据采集和奇点云自研的AI驱动的数据中台,从采集到计算再到算法服务形成数据资产,恰到好处地解决了数据到资产的问题;数据智能应用层则解决了数据分析和算法逻辑的问题;在应用行业层我们有产研团队和行业专家,结合行业经验实现数据赋能。最终实现数据价值的三个关键点,让数据创造价值,让商业更智能。 

要让数据发挥价值,先通过「盘理管用」的方法论解决数据的问题,再通过算法和数据分析解决技术问题,结合行业专家丰富的行业经验,最大化释放数据价值,驱动业务增长与创新。

奇点云 | StartDT
奇点云 | StartDT

数据智能是未来商业的源动力,奇点云打造的AI驱动的数据中台,基于大数据计算平台、自主研发的视觉计算技术和覆盖多场景的智能终端。帮助企业实现数据采集自动化、数据处理智能化、数据资产私有化、数据应用敏捷化,加快企业创新步伐,实现数据生命周期管理,将数据智能应用到企业经营的各个环节,降低成本,提高效率,协同企业跨越数据智能大规模应用的奇点,让商业更智能。

产业数据价值
2
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

数据分析技术

数据分析是一类统计方法,其主要特点是多维性和描述性。有些几何方法有助于揭示不同的数据之间存在的关系,并绘制出统计信息图,以更简洁的解释这些数据中包含的主要信息。其他一些用于收集数据,以便弄清哪些是同质的,从而更好地了解数据。 数据分析可以处理大量数据,并确定这些数据最有用的部分。

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

数据管理技术

数据管理是利用计算机硬件和软件技术对数据进行有效的收集、存储、处理和应用的过程,其目的在于充分有效地发挥数据的作用。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

推荐文章
暂无评论
暂无评论~