认知推理:人工智能的下一个浪潮

2020 年 3 月 25 日,智源研究院学术副院长、清华大学计算机系唐杰教授作客首届中科院“先导杯”并行计算应用大奖赛启动仪式,并为大家带来人工智能下一个十年》的主题报告。

唐老师从人工智能发展的历史开始,深入分析人工智能近十年的发展,阐述了人工智能感知方面取得的重要成果,尤其提到算法是这个感知时代最重要、最具代表性的内容,重点讲解了 BERT、ALBERT、MoCo2 等取得快速进展的算法。最后说到下一波人工智能浪潮的兴起,就是实现具有推理、可解释性、认知的人工智能

近年来,人工智能掀起了第三次浪潮,各个国家纷纷制订了人工智能的发展战略。

在我国,2016 年国务院发布《“十三五”国家科技创新规划》,明确将人工智能作为发展新一代信息技术的主要方向;2017 年 7 月,国务院颁布《新一代人工智能发展规划》;2017 年 10 月,人工智能被写入“十九大报告”;今年,人工智能又作为“新基建”七大领域之一被明确列为重点发展领域。

美国于 2016 年先后发布了《为人工智能的未来做好准备》和《国家人工智能研究与发展战略规划》两份报告,将人工智能提升到了国家战略的层面;2018 年,白宫举办人工智能峰会,邀请业界、学术界和政府代表参与,并成立了人工智能特别委员会。日本、德国等多个国家也发布了相关的战略、计划,大力推进人工智能的发展。

在这个时代背景下,我们需要考虑人工智能未来十年会怎样发展。首先,我们需要从人工智能的发展历史中找到灵感。

AI 的发展历史

随着克劳德·香农(Claude Shannon)在 1950 年提出计算机博弈,以及阿兰·图灵(Alan Turing)在 1954 年提出“图灵测试”,人工智能这一概念开始进入人们的视野。

到了 20 世纪 60 年代,人工智能出现了第一波高潮,发展出了自然语言处理和人机对话技术。其中的代表性事件是丹尼尔·博布罗(Daniel Bobrow)在 1964 年发表的Natural language input for a computer problem solving system,以及约瑟夫·维森鲍姆 (Joseph Weizenbaum) 在 1966 年发表的 ELIZA—a computer program for the study of natural language communication between man and machine

此外,还有一个重要的发展——知识库。1968 年,爱德华·费根鲍姆 (Edward Feigenbaum)提出首个专家系统 DENDRAL 的时候对知识库给出了初步的定义,其中隐含了第二波人工智能浪潮兴起的契机。

之后,人工智能进入了一轮跨度将近十年的寒冬。

20 世纪 80 年代,人工智能进入了第二波浪潮,这其中代表性的工作是 1976 年兰德尔·戴维斯 (Randall Davis)构建和维护的大规模的知识库,1980 年德鲁·麦狄蒙(Drew McDermott)和乔恩·多伊尔(Jon Doyle)提出的非单调逻辑,以及后期出现的机器人系统。

在 1980 年,汉斯·贝利纳 (Hans Berliner)打造的计算机战胜双陆棋世界冠军成为标志性事件。随后,基于行为的机器人学在罗德尼·布鲁克斯 (Rodney Brooks)的推动下快速发展,成为人工智能一个重要的发展分支。这其中格瑞·特索罗(Gerry Tesauro)等人打造的自我学习双陆棋程序为后来的增强学习的发展奠定了基础。

20 世纪 90 年代,AI 出现了两个很重要的发展:第一项内容是蒂姆·伯纳斯·李(Tim Berners-Lee)在 1998 年提出的语义互联网路线图,即以语义为基础的知识网或知识表达。后来又出现了 OWL 语言和其他一些相关知识描述语言。第二项内容是杰弗里·辛顿(Geoffrey Hinton)等人提出的深度学习,这标志着第三次人工智能浪潮的兴起。

在这次浪潮中,我们也看到很多企业参与其中,如塞巴斯蒂安·特龙(Sebastian Thrun)在谷歌主导推出的自动驾驶汽车IBM 的沃森(Watson)于 2011 年在《危险边缘》(Jeopardy)中获得冠军,苹果在 2011 年推出的自然语言问答工具 Siri 等。

以上就是人工智能在 60 多年的发展历史中取得的一些标志性成果和技术。

AI 近十年的发展

我们再深入分析 AI 近十年的发展,会看到一个重要的标志:人工智能感知方面取得重要成果人工智能语音识别、文本识别、视频识别等方面已经超越了人类,我们可以说 AI 在感知方面已经逐渐接近人类的水平。从未来的趋势来看,人工智能将会有一个从感知到认知逐步发展的基本趋势,如下图所示:

首先,我们来看看 AI 在感知方面做了哪些事情。在感知方面,AlphaGo、无人驾驶、文本和图片之间的跨媒体计算等取得了快速发展。从宏观来看,算法是这个感知时代最重要、最具代表性的内容。如果把最近十年的重要算法进行归类,以深度学习为例进行展示的话,我们可以得到下图所示的发展脉络。

最上面浅紫色部分的内容是以前向网络为代表的深度学习算法。

第二层淡绿色部分的内容表示一个以自学习、自编码为代表的学习时代。

第三层橘色部分的内容代表自循环神经网络(概率图模型的发展)的算法。

最下面粉色部分是以增强学习为代表的发展脉络。

总体来讲,我们可以把深度学习算法归类为这四个脉络,而这四个方面都取得了快速的进展。

如果再深入追溯最近几年最重要的发展,会发现 BERT 是一个典型代表(想深入了解的读者可以阅读https://arxiv.org/pdf/1810.04805.pdf)。以 BERT 为代表的预训练算法得到了快速的发展,基本上所有的算法都采用了预训练+微调+ Fine tune 的方法,如下图所示:

BERT 在 2018 年年底通过预训练打败了 NLP 上 11 个任务的经典算法;XLNet 在 2019 年提出来通过双向网络的方法超过了 BERT (想深入了解的读者可以阅读https://arxiv.org/pdf/1906.08237.pdf),如下图所示:

再后来,ALBERT 又超过了 XLNet 和原始的 BERT(想深入了解的读者可以阅读https://arxiv.org/pdf/1909.11942.pdf)。整个 BERT 的发展引发了后续一系列的工作。

在其他方面,也涌现了很多有代表性的工作。如在 2018 年年底,英伟达通过预训练模型实现高清视频的自动生成。想要了解更多详细信息的读者可以阅读https://arxiv.org/abs/1808.06601

DeepMind 又把代表性的关联关系生成到 graph_net 中,于是在网络中可以实现一定的推理,其结构如下图所示。想要了解更多信息的读者可以阅读https://arxiv.org/abs/1806.01261。

Facebook 的何恺明等人提出了以 contrastive learning 为基础的 MoCo 及 MoCo2,在很多无监督学习(Unsupervised learning)的结果上超过了监督学习(Supervised learning),这是一个非常重要的进展,这也标志着预训练达到了一个新的高度。想要了解更多信息的读者可以阅读https://arxiv.org/abs/1911.05722

杰弗里·辛顿等人利用 SimCLR,通过简化版的 contrastive learning 超过了 MoCo,后来 MoCo2 又宣称超过了 SimCLR,想要了解更多信息的读者可以阅读https://arxiv.org/abs/2002.05709。

总体来看,在算法的时代,预训练算法取得了快速的进展。那么未来十年,AI 将何去何从?

展望未来十年

这里,我想引用张钹院士提出来的第三代人工智能的理论体系。

2015 年,张钹院士提出第三代人工智能体系的雏形。

2017 年,DARPA 发起 XAI 项目,核心思想是从可解释的机器学习系统、人机交互技术以及可解释的心理学理论三个方面,全面开展可解释性 AI 系统的研究。

2018 年底,正式公开提出第三代人工智能的理论框架体系,核心思想为:

  • 建立可解释、鲁棒性的人工智能理论和方法。
  • 发展安全、可靠、可信及可扩展的人工智能技术。
  • 推动人工智能创新应用。

其中具体实施的路线图如下:

  • 与脑科学融合,发展脑启发的人工智能理论。
  • 数据与知识融合的人工智能理论与方法。

在这个思想框架下,我们做了一定的深入研究,我们称之为认知图谱。其核心概念是知识图谱+认知推理+逻辑表达。

下面展开解释一下。

知识图谱大家很熟悉,是谷歌在 2012 年提出来的。这其中有两个重磅的图灵奖获得者:一个是爱德华·费根鲍姆(1994 年图灵奖得主),他在 20 世界 60 年代就提出来了知识库的一些理论体系和框架;另一个是 1994 年蒂姆·伯纳斯·李(2016 年图灵奖得主、WWW 的创始人、语义网络的创始人)。这里面除了知识工程、专家系统,还有一个代表性的系统 CYC,CYC 可以说是历史上持续时间最长的项目,从 1985 年开始,这个项目直到现在还一直在持续。

说完了知识图谱,我们来说一下认知图谱。

相信很多人对认知图谱都比较陌生,这里我们举一个例子来说明一下。假如我们要解决一个问题“找到一个 2003 年在洛杉矶的 Quality  咖啡馆拍过电影的导演(Who is the director of the 2003 film which has scenes in it filmed at The Quality Cafe in Los Angeles)”。如果是人来解决这个问题的话,可能是先追溯相关的文档,如 Quality 咖啡馆的介绍文档,洛杉矶的维基百科页面等,我们可能会从中找到相关的电影,如 Old School ,在这个电影的介绍文档里面,我们可能会进一步找到该电影的导演 Todd Phillips,经过比对电影的拍摄时间是 2003 年,最终确定答案是 Todd Phillips,具体流程如下图所示:

当我们用传统算法(如 BIDAF, BERT, XLNet)进行解决的时候,计算机可能只会找到局部的片段,仍然缺乏一个在知识层面上的推理能力,这是计算机很欠缺的。人在这方面具有优势,而计算机缺乏类似的能力。

人在解决上述问题的过程中存在推理路径、推理节点,并且能理解整个过程,而 AI 系统,特别是在当下的 AI 系统中,深度学习算法将大部分这类问题都看作是一个黑盒子,如下图所示:

怎么办呢?对此,我们提出了“认知图谱”这个概念,我们希望用知识表示、推理和决策,包括人的认知来解决上述问题,其基本结构如下:

这个基本的思想是结合认知科学中的双通道理论。在人脑的认知系统中存在两个系统:System 1 和  System 2,如下图所示。System 1 是一个直觉系统,它可以通过人对相关信息的一个直觉匹配寻找答案,它是非常快速、简单的;而 System 2 是一个分析系统,它通过一定的推理、逻辑找到答案。

在去年的 NIPS 上,图灵奖获得者 Bengio 在大会主旨报告的 Keynote 也提到,System 1 到 System 2 的认知是深度学习未来发展的重要的方向,如下图所示:

因此,我们大概用这个思路构建了这个新的、我们称为认知图谱的这样一个方法。在 System 1 中我们主要做知识的扩展,在 System 2 中我们做逻辑推理和决策,如下图所示:

可以看到,我们在 System 1 中做知识的扩展,比如说针对前面的问题,我们首先找到相关的影片,然后用 System 2 来做决策。如果是标准答案,就结束整个推理的过程。如果不是标准答案,而相应的信息又有用,我们就把它作为一个有用信息提供给 System 1,System 1 继续做知识的扩展,System 2 再来做决策,直到最终找到答案。

现在,在这两个系统中,System 1 是一个直觉系统,我们用 BERT 来实现,实现了以后,我们就可以做相关的信息的匹配;System 2 就用一个图卷积网络来实现,在图卷积网络中可以做一定的推理和决策。通过这个思路,我们就可以实现一定的推理+决策。

这是一个总体的思路,要真正实现知识和推理,其实还需要万亿级的常识知识库的支持,如下图所示。也就是说,四五十年前费根鲍姆做过的事情,也许我们现在要重做一遍,但是我们要做到更大规模的常识知识图谱,并且用这样的方法,用这样的常识知识图谱来支撑上面的深度学习的计算,这样才能真正实现未来的 AI。

所以说,这一代人工智能浪潮也许到终点还是没有推理能力,没有可解释能力。而人工智能浪潮兴起,就是实现具有推理具有可解释性具有认知的人工智能,我们认为这是 AI 下一个 10 年要发展、也一定会发展的一个重要方向。

这里我列出来了相关的文章,大家感兴趣的话可以看一下。想要了解更多内容,可以登录http://keg.cs.tsinghua.edu.cn/jietang。

  • Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, and Jie Tang. Cognitive Graph for Multi-Hop Reading Comprehension at Scale. ACL’19.
  • Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. ProNE: Fast and Scalable Network Representation Learning. IJCAI’19.
  • Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou and Jie Tang. Representation Learning for Attributed Multiplex Heterogeneous Network. KDD’19.
  • Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao Gu, Yan Wang, Bin Shao, Rui Li, and Kuansan Wang. OAG: Toward Linking Large-scale Heterogeneous Entity Graphs. KDD’19.
  • Qibin Chen, Junyang Lin, Yichang Zhang, Hongxia Yang, Jingren Zhou and Jie Tang. Towards Knowledge-Based Personalized Product Description Generation in E-commerce. KDD'19.
  • Yifeng Zhao, Xiangwei Wang, Hongxia Yang, Le Song, and Jie Tang. Large Scale Evolving Graphs with Burst Detection. IJCAI’19.
  • Yu Han, Jie Tang, and Qian Chen. Network Embedding under Partial Monitoring for Evolving Networks. IJCAI’19.
  • Yifeng Zhao, Xiangwei Wang, Hongxia Yang, Le Song, and Jie Tang. Large Scale Evolving Graphs with Burst Detection. IJCAI’19.
  • Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie Tang. NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization. WWW'19.
  • Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. DeepInf: Modeling Influence Locality in Large Social Networks. KDD’18.
  • Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec. WSDM’18.
  • Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. ArnetMiner: Extraction and Mining of Academic Social Networks. KDD’08.
产业人工智能认知推理
31
相关数据
DeepMind机构

DeepMind是一家英国的人工智能公司。公司创建于2010年,最初名称是DeepMind科技(DeepMind Technologies Limited),在2014年被谷歌收购。在2010年由杰米斯·哈萨比斯,谢恩·列格和穆斯塔法·苏莱曼成立创业公司。继AlphaGo之后,Google DeepMind首席执行官杰米斯·哈萨比斯表示将研究用人工智能与人类玩其他游戏,例如即时战略游戏《星际争霸II》(StarCraft II)。深度AI如果能直接使用在其他各种不同领域,除了未来能玩不同的游戏外,例如自动驾驶、投资顾问、音乐评论、甚至司法判决等等目前需要人脑才能处理的工作,基本上也可以直接使用相同的神经网上去学而习得与人类相同的思考力。

IBM机构

是美国一家跨国科技公司及咨询公司,总部位于纽约州阿蒙克市。IBM主要客户是政府和企业。IBM生产并销售计算机硬件及软件,并且为系统架构和网络托管提供咨询服务。截止2013年,IBM已在全球拥有12个研究实验室和大量的软件开发基地。IBM虽然是一家商业公司,但在材料、化学、物理等科学领域却也有很高的成就,利用这些学术研究为基础,发明很多产品。比较有名的IBM发明的产品包括硬盘、自动柜员机、通用产品代码、SQL、关系数据库管理系统、DRAM及沃森。

https://www.ibm.com/us-en/
相关技术
何恺明人物

Facebook AI Research研究科学家。Residual Net提出者。

唐杰人物

唐杰是清华大学计算机系副教授。他以学术社交网络搜索系统Arnetminer而闻名,该系统于2006年3月推出,目前已吸引来自220个国家的2,766,356次独立IP访问。他的研究兴趣包括社交网络和数据挖掘。

克劳德人物

ClaudeLemaréchal是法国应用数学家,也是法国格勒诺布尔附近INRIA的前高级研究员。 在数学优化中,ClaudeLemaréchal因其在非线性优化的数值方法方面的工作而出名,特别是对于不可扭曲扭结问题。 Lemaréchal和菲尔。沃尔夫开创了用于凸面最小化的束下降方法。 机构: 法国国家信息与自动化研究所

杰弗里·辛顿人物

杰弗里·埃弗里斯特·辛顿 FRS(英语:Geoffrey Everest Hinton)(1947年12月6日-)是一位英国出生的加拿大计算机学家和心理学家,以其在类神经网络方面的贡献闻名。辛顿是反向传播算法和对比散度算法的发明人之一,也是深度学习的积极推动者。

Yan Wang人物

纽约州立大学宾汉姆顿分校计算机科学系副教授,研究兴趣:移动计算、智能医疗、嵌入式系统和无线网络。曾获得CNS 2018最佳论文奖。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

专家系统技术

专家系统(ES)是人工智能最活跃和最广泛的领域之一。专家系统定义为:使用人类专家推理的计算机模型来处理现实世界中需要专家作出解释的复杂问题,并得出与专家相同的结论。简言之,如图1所示,专家系统可视作“知识库(knowledge base)”和“推理机(inference machine)” 的结合。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

常识知识库技术

常识知识库是当代智能系统或智能代理所具备的一种知识库。它是解决人工智能或知识工程技术瓶颈难题的一项关键措施,其特点是数量上规模大。早期人工智能或知识工程系统所具备的领域知识库是另一种知识库。也就是说,领域知识库和常识知识库是智能计算机系统所具备的知识库的两种基本类型。计算机科学领域普遍认为领域知识库和常识知识库是人工智能或知识工程技术瓶颈难题。从早期关注专家的领域知识到现在同时关注常识知识,这是人工智能或知识工程技术的一种进步。由于计算机硬件和软件以及数据库乃至数据仓库及其人机交互界面等技术的不断成熟,使得人们在21世纪开发各种专家系统所需要的各个中等规模的领域知识库和开发常识系统所需要的大规模的常识知识库都具备了基础条件。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

自动驾驶汽车技术

自动驾驶汽车,又称为无人驾驶汽车、电脑驾驶汽车或轮式移动机器人,是自动化载具的一种,具有传统汽车的运输能力。作为自动化载具,自动驾驶汽车不需要人为操作即能感测其环境及导航。

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

逻辑推理技术

逻辑推理中有三种方式:演绎推理、归纳推理和溯因推理。它包括给定前提、结论和规则

知识库技术

知识库是用于知识管理的一种特殊的数据库,以便于有关领域知识的采集、整理以及提取。知识库中的知识源于领域专家,它是求解问题所需领域知识的集合,包括基本事实、规则和其它有关信息。

知识图谱技术

知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。 知识图谱这个概念最早由Google提出,主要是用来优化现有的搜索引擎。不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。

监督学习技术

监督式学习(Supervised learning),是机器学习中的一个方法,可以由标记好的训练集中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。训练集是由一系列的训练范例组成,每个训练范例则由输入对象(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

DENDRAL技术

Dendral是20世纪60年代的人工智能(AI)项目,以及它生产的计算机软件专家系统。其主要目的是研究科学中的假设形成和发现。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

语音识别技术

自动语音识别是一种将口头语音转换为实时可读文本的技术。自动语音识别也称为语音识别(Speech Recognition)或计算机语音识别(Computer Speech Recognition)。自动语音识别是一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处理理论、信息论、计算机科学等众多学科紧密相连。由于语音信号的多样性和复杂性,目前的语音识别系统只能在一定的限制条件下获得满意的性能,或者说只能应用于某些特定的场合。自动语音识别在人工智能领域占据着极其重要的位置。

语义网技术

语义网是由万维网联盟的蒂姆·伯纳斯-李在1998年提出的一个概念,它的核心是:通过给万维网上的文档蒂姆加能够被计算机所理解的语义,从而使整个互联网成为一个通用的信息交换媒介。语义万维网通过使用标准、置标语言和相关的处理工具来扩展万维网的能力。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

图灵测试技术

图灵测试(英语:Turing test,又译图灵试验)是图灵于1950年提出的一个关于判断机器是否能够思考的著名试验,测试某机器是否能表现出与人等价或无法区分的智能。测试的谈话仅限于使用唯一的文本管道,例如计算机键盘和屏幕,这样的结果是不依赖于计算机把单词转换为音频的能力。

语义网络技术

语义网络常常用作知识表示的一种形式。它其实是一种有向图;其中,顶点代表的是概念,而边则表示的是这些概念之间的语义关系。

概率图模型技术

在概率论和统计学中,概率图模型(probabilistic graphical model,PGM) ,简称图模型(graphical model,GM),是指一种用图结构来描述多元随机 变量之间条件独立关系的概率模型

人机交互技术

人机交互,是一门研究系统与用户之间的交互关系的学问。系统可以是各种各样的机器,也可以是计算机化的系统和软件。人机交互界面通常是指用户可见的部分。用户通过人机交互界面与系统交流,并进行操作。小如收音机的播放按键,大至飞机上的仪表板、或是发电厂的控制室。

图卷积网络技术

假设有一张图,要做分类,传统方法需要手动提取一些特征,比如纹理啊,颜色啊,或者一些更高级的特征。然后再把这些特征放到像随机森林等分类器,给到一个输出标签,告诉它是哪个类别。而深度学习是输入一张图,经过神经网络,直接输出一个标签。特征提取和分类一步到位,避免了手工提取特征或者人工规则,从原始数据中自动化地去提取特征,是一种端到端(end-to-end)的学习。相较于传统的方法,深度学习能够学习到更高效的特征与模式。

推荐文章
心理咨询加入AI技术会怎么样?我们是致力于用AI辅助心理健康事业发展的团队,亟需标注海量心理咨询语料。寻找志愿者加入标注团队,线上协作,标注服务已投入运营,想认识更多朋友、想得到心理咨询机会、立刻写信到poppysincethen@gmail.com,写明姓名、手机号、微信号和简单的自我介绍,为什么想参与。