CVPR 2020论文收录揭晓:百度22篇论文入选,涵盖全视觉领域

近日,计算机视觉领域“奥斯卡”CVPR 2020官方公布论文收录结果,伴随投稿数量激增,接收率开始经历了一个持续下降的过程。今年,在6656篇有效投稿中,共有1470篇论文被接收,接收率为22%左右,相较去年25%的入选率,同比下降3%。在论文接收率下降的同时,中国科技企业被录取论文数量却不降反增,百度作为AI代表企业今年中选22篇,比去年的17篇增加了5篇。

近年来,CVPR蓬勃发展的重要原因,很大一部分是源自于中国科技公司的贡献。本次会议中,百度入选论文22篇,全面涵盖视觉领域下的人脸检测&识别、视频理解&分析、图像超分辨、及自动驾驶中的车辆检测、场景实例级分割等众多热门子领域,也向国际领域展示了中国视觉技术水平的深厚积累。除了多篇论文被收录,百度还将在本届CVPR中联合悉尼科技大学、南开大学等单位共同主办弱监督学习研讨会(The 2nd Workshop on Learning from Imperfect Data),以及中科院等单位共同主办活体检测研讨会(The 4th Workshop on Media Forensics),与更多顶尖学者进行深入交流。

如下为百度入选CVPR 2020的部分论文展示:

人脸检测&识别

HAMBox: Delving into Online High-quality Anchors for Detecting Outer Faces

近期,关于人脸检测器利用锚点构建一个结合分类和坐标框回归的多任务学习问题,有效的锚点设计和锚点匹配策略使得人脸检测器能够在大姿态和尺度变化下精准定位人脸。本次论文中,百度提出了一种在线高质量锚点挖掘策略HAMBox, 它可以使得异常人脸(outer faces)被补偿高质量的锚点。HAMBox方法可以成为一种基于锚点的单步骤人脸检测器的通用优化方案。该方案在WIDER FACE、FDDB、AFW和PASCAL Face多个数据集上的实验表明了其优越性,同时在2019年WIDER Face and Pedestrian Challenge上,以mAP 57.13%获得冠军,享誉国际。

FaceScape: a Large-scale High Quality 3D Face Dataset and Detailed Riggable 3D Face Prediction

该论文发布大尺度高精度人脸三维模型数据库FaceScape,并首次提出从单幅图像预测高精度、可操控人脸三维模型的方法。FaceScape数据库包含约18000个高精度三维面部模型,每个模型包含基底模型和4K分辨率的置换图及纹理贴图,能够表征出面部极细微的三维结构和纹理。与现有公开的三维人脸数据库相比,FaceScape在模型数量和质量上均处于世界最高水准。在FaceScape数据库的基础之上,本文还探索了一项具有挑战性的新课题:以单幅人脸图像为输入,预测高精度、表情可操控的三维人脸模型。该方法的预测结果能够通过表情操控生成精细的面部模型序列,所生成的模型在新表情下仍然包含逼真的细节三维结构。据悉,FaceScape数据库和代码将于近期免费发布,供非商业用途的学术研究使用。

Hierarchical Pyramid Diverse Attention Network for Face Recognition 

目前主流的人脸识别方法很少考虑不同层的多尺度局部特征。为此,本文提出了一个分层的金字塔多样化注意力模型。当面部全局外观发生巨大变化时,局部区域将起重要作用。最近的一些工作应用注意力模块来自动定位局部区域。如果不考虑多样性,所学的注意力通常会在一些相似的局部块周围产生冗余的响应,而忽略了其他潜在的有判别力的局部块。此外,由于姿态或表情变化,局部块可能以不同的尺度出现。为了缓解这些挑战,百度团队提出了一种金字塔多样化注意模块,以自动和自适应地学习多尺度的多样化局部表示。更具体地说,开发了金字塔注意力模块以捕获多尺度特征;同时为了鼓励模型专注于不同的局部块,开发了多元化的学习方法。其次,为了融合来自低层的局部细节或小尺度面部特征图,可以使用分层双线性池化来代替串联或添加。

目标检测&跟踪

Associate-3Ddet: Perceptual-to-Conceptual association for 3D Point Cloud Object Detection

目标检测技术是机器人和自动驾驶领域中最重要的模式识别任务之一。本文提出了一种领域自适应的方法来增强稀疏点云特征的鲁棒性。更具体地说,是将来自真实场景的特征(感知域特征)和从包含丰富细节信息的完整虚拟点云特征(概念域特征)进行了关联。这种域适应特征关联的方法实际上是模拟在人脑进行物体感知时的联想关联功能。这种三维目标检测算法在训练过程中增强了特征提取能力,在推理阶段不需要引入任何额外的组件,使得该框架易于集成到各种三维目标检测算法中。

Neural Message Passing and Attentive Spatiotemporal Transformer for Point Cloud Based 3D Video Object Detection  

基于单帧点云的3D目标检测器通常无法应对目标遮挡、远距离和非均匀采样等情况,而点云视频(由多个点云帧组成)通常包含丰富的时空信息,可以改善上述情况下的检测效果,因此本文提出一个端到端的在线3D点云视频目标检测器。论文中的Pillar Message Passing Network(PMPNet),可将点云俯视图下的非空栅格编码为图节点,并在节点间进行信息传递以动态改善节点感受野,PMPNet可以有效结合图空间的非欧特性和CNN的欧式特性;在时空特征聚合模块中,还提出空间和时间注意力机制来强化原始的Conv-GRU层,空间注意力机制对new memory进行前景增强和背景抑制,时间注意力机制用以对齐相邻帧中的动态前景目标。该3D点云视频目标检测器在nuScenes大型基准集上达到了领先效果。

A Unified Object Motion and Association Model for Efficient Online Multi-object Tracking 

利用单目标跟踪器(SOT)作为运动预测模型执行在线多目标跟踪(MOT)是当前的流行方法 ,但是这类方法通常需要额外设计一个复杂的相似度估计模型来解决相似目标干扰和密集遮挡等问题。本文利用多任务学习策略,将运动预测和相似度估计到一个模型中。值得注意的是,该模型还设计了一个三元组网络,可同时进行SOT训练、目标ID分类和排序,网络输出的具有判别力的特征使得模型可以更准确地定位、识别目标和进行多目标数据关联;此外,论文中提出了一个任务专属注意力模块用于强调特征的不同上下文区域,进一步强化特征以适用于SOT和相似度估计任务。该方法最终得到一个低存储(30M)和高效率(5FPS)的在线MOT模型,并在MOT2016和MOT2017标准测试集上取得了领先效果。

视频理解&分析

ActBERT: Learning Global-Local Video-Text Representations

受到BERT在自我监督训练中的启发,百度团队对视频和文字进行类似的联合建模, 并基于叙述性视频进行视频和文本对应关系进行研究。其中对齐的文本是通过现成的自动语音识别功能提供的,这些叙述性视频是进行视频文本关系研究的丰富数据来源。ActBERT加强了视频文字特征,可以发掘到细粒度的物体以及全局动作意图。百度团队在许多视频和语言任务上验证了ActBERT的泛化能力,比如文本视频片段检索、视频字幕生成、视频问题解答、动作分段和动作片段定位等,ActBERT明显优于最新的一些视频文字处理算法,进一步证明了它在视频文本特征学习中的优越性。

Memory Aggregation Networks for Efficient Interactive Video Object Segmentation

该论文目的是设计一个快速的交互式视频分割系统,用户可以基于视频某一帧在目标物上给出简单的线,分割系统会把整个视频中该目标物分割出来。此前,针对交互式视频分割的方法通常使用两个独立的神经网络,分别进行交互帧分割、将分割结果传导至其他帧。本文将交互与传导融合在一个框架内,并使用像素embedding的方法,视频中每一帧只需要提取一次像素embedding,更有效率。另外,该方式使用了创新性的记忆存储机制,将之前交互的内容作用到每一帧并存储下来,在新的一轮交互中,读取记忆中对应帧的特征图,并及时更新记忆。该方式大幅提升分割结果的鲁棒性,在DAVIS数据集上取得了领先的成绩。

Action Segmentation with Joint Self-Supervised Temporal Domain Adaptation

尽管最近在完全监督的领域上,动作分割技术方面取得了进步,但是其性能仍有不足。一个主要的挑战是时空变化的问题(例如不同的人可能以各种方式进行相同的动作)。因此,该论文中利用未标记的视频来解决此问题,方法是将动作分割任务重新设计为跨域(domain)问题,而且该跨域问题主要针对时空变化引起的域差异。为了减少差异,论文提出了“自我监督的时域自适应(SSTDA)”,其中包含两个自我监督的辅助任务(binary和sequential的域预测),以联合对齐嵌入不同规模时域动态的跨域特征空间,从而获得比其他域适应(DA)方法更好的效果。在三个具有挑战性的公开数据集(GTEA、50Salads和Breakfast)上,SSTDA远远领先于当前的最新方法,并且只需要65%的标签训练数据即可获得与当前最新方法可比的性能,这也表明该方法可以有效利用未标签目标视频来适应各种变化。

图像超分辨

Channel Attention based Iterative Residual Learning for Depth Map Super-Resolution

随着深度信息的应用范围越来越大,深度图像超分辨问题引起了广泛研究者的关注。深度图像超分辨率是指由低分辨率深度图像为基础,获取高质量的高分辨率深度图像。本文提出的是一种深度图像超分辨率方法,同时对低分辨率深度图像的产生方式进行分析,并提出两种模拟低分辨率深度图像生成的方式:伴随噪声的非线性插值降采样产生方式及间隔降采样产生方式。

针对不同类型的低分辨率深度图像,本文使用迭代的残差学习框架以低分辨率深度图像为输入,以coarse-to-fine的方式逐步恢复高分辨率深度图像的高频信息;同时,使用通道增强的策略加强包含高频信息较多的通道在整个学习框架中的作用;另外,还使用多阶段融合的策略有效复用在coarse-to-fine过程中获得的有效信息;最后,通过TGV约束和输入损失函数进一步优化获得的高分辨率深度图像。此次提出的方法可以有效处理深度图像超分辨率问题,与目前已知的方法相比,效果显著,优势明显。

车辆识别

3D Part Guided Image Editing for Fine-grained Object Understanding

在自动驾驶场景中,准确地感知“特殊”状态的车辆对行驶安全至关重要(例如:车门打开可能有乘客下车,尾灯闪烁意味着即将变道)。针对此难题,本文提出了一个全新的数据合成(增强)方法,即通过对齐的部件级三维模型对二维图像中的车辆进行编辑,自动生成大量“特殊”状态(例如:开启的车门、后备箱、引擎盖,闪烁的前照灯、尾灯)的车辆图像与语义标注结果。针对生成的训练数据,本文设计了一个双路骨干网络使得模型可以泛化到真实的测试数据,与传统的模型渲染方法相比,本方法平衡了域差异的问题并且更加轻量便捷。

为了验证方法的有效性,本文构建了CUS (Cars in  Uncommon States) 数据集,标注了约1400张真实街景下车辆处于特殊状态的图像。实验结果表明:本文提出的方法可以有效地对“特殊”状态的车辆进行检测、整车的实例级分割、部件的语义分割以及状态描述,对自动驾驶的安全决策有着重要的意义。

神经网络架构搜索

GP-NAS: Gaussian Process based Neural Architecture Search

通过对深度神经网络进行模型结构自动搜索, NAS(Neural Architecture Search)在各类计算机视觉的任务中都超越了人工设计模型结构的性能。本论文旨在解决NAS中的三个重要问题:(1)如何衡量模型结构与其性能之间的相关性?(2)如何评估不同模型结构之间的相关性?(3)如何用少量样本学习这些相关性?为此,本论文首先从贝叶斯视角来对这些相关性进行建模。

首先,通过引入一种新颖的基于高斯过程的NAS(GP-NAS)方法,并通过定制化的核函数和均值函数对相关性进行建模。并且,均值函数和核函数都是可以在线学习的,以实现针对不同搜索空间中的复杂相关性的自适应建模。此外,通过结合基于互信息的采样方法,可以通过最少的采样次数就能估计/学习出GP-NAS的均值函数和核函数。在学习得到均值函数和核函数之后,GP-NAS就可以预测出不同场景,不同平台下任意模型结构的性能,并且从理论上得到这些性能的置信度。在CIFAR10和ImageNet上的大量实验证明了我们算法的有效性,并且取得了SOTA的实验结果。

BFBox: Searching Face-appropriate Backbone and Feature Pyramid Network for Robust Face Detector

本文提出的BFBox是基于神经网络架构搜索的方法,同时搜索适合人脸检测的特征提取器和特征金字塔。动机是我们发现了一个有趣的现象:针对图像分类任务设计的流行的特征提取器已经在通用目标检测任务上验证了其重要的兼容性,然而在人脸检测任务上却没有取得预期的效果。同时不同的特征提取器与特征金字塔的结合也不是完全正相关的。首先,本文对于比较好的特征提取器进行分析,提出了适合人脸的搜索空间;其次,提出了特征金字塔注意力模块(FPN-attention Module)去加强特征提取器和特征金字塔之间的联系;最后, 采取SNAS的方法同时搜出适和人脸的特征提取器和特征金字塔结构。多个数据集上的实验表明了BFBox方法的优越性。

结构设计

Gated Channel Transformation for Visual Recognition

本文针对深度卷积神经网络提出了一种常规的、易应用的变换单元,即Gated Channel Transformation (GCT) 模块。GCT结合了归一化方法和注意力机制,并使用轻量级的、易于分析的变量来隐式地学习网络通道间的相互关系。这些通道量级的变量可以直接影响神经元间的竞争或者合作行为,且能方便地与卷积网络本身的权重参数一同参与训练。通过引入归一化方法,GCT模块要远比SE-Nets的SE模块轻量,这使得将GCT部署在每个卷积层上而不让网络变得过于臃肿成为了可能。本文在多个大型数据集上针对数种基础视觉任务进行了充分的实验,即ImageNet数据集上的图片分类,COCO上的目标检测实例分割,还有Kinetics上的视频分类。在这些视觉任务上,引入GCT模块均能带来明显的性能提升。这些大量的实验充分证明了GCT模块的有效性。

表征学习

Label-Isolated Memory for Long-Tailed Visual Recognition

实际场景中的数据通常遵循“长尾”分布。大量类别都是数据较少,而有少数类别数据充足。为了解决类不平衡问题,本文引入了类别隔离记忆结构(LIM)用于长尾视觉识别。首先,LIM增强了卷积神经网络快速学习尾部类别特征的能力。通过存储每个类的最显著的类别特征,独立更新存储单元,LIM进一步降低了分类器学偏的可能。其次,本文为多尺度空间特征编码引入了一种新颖的区域自注意力机制。为了提高尾类识别通用性,合并更多区别性强的特征是有好处的。本文提出以多个尺度对局部特征图进行编码,同时背景信息也被融合进来。配备LIM和区域自注意力机制,该方法在5个数据集上都取得了最好的性能。

CVPR是计算机视觉领域的国际顶级会议,百度能够在CVPR中保持多年的优势,背后是百度AI技术多年积累和业务实践的集大成者——百度大脑。百度大脑AI开放平台对外开放240项核心AI能力,除了在国际领域中屡获佳绩的视觉技术,其语音、人脸、NLP、OCR等技术也有不俗的成绩,调用量均为中国第一。未来,百度还将不断打磨、创新人工智能技术,从顶尖的学术研究、前瞻的技术布局、深入行业的落地应用,为全球科技发展出一份力。

产业百度CVPR 2020
相关数据
池化技术

池化(Pooling)是卷积神经网络中的一个重要的概念,它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效的原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合。通常来说,CNN的卷积层之间都会周期性地插入池化层。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

自注意力技术

自注意力(Self-attention),有时也称为内部注意力,它是一种涉及单序列不同位置的注意力机制,并能计算序列的表征。自注意力在多种任务中都有非常成功的应用,例如阅读理解、摘要概括、文字蕴含和语句表征等。自注意力这种在序列内部执行 Attention 的方法可以视为搜索序列内部的隐藏关系,这种内部关系对于翻译以及序列任务的性能非常重要。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

核函数技术

核函数包括线性核函数、多项式核函数、高斯核函数等,其中高斯核函数最常用,可以将数据映射到无穷维,也叫做径向基函数(Radial Basis Function 简称 RBF),是某种沿径向对称的标量函数。最常应用于SVM支持向量机中

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

人脸识别技术

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

模式识别技术

模式识别(英语:Pattern recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。 我们把环境与客体统称为“模式”。 随着计算机技术的发展,人类有可能研究复杂的信息处理过程。 信息处理过程的一个重要形式是生命体对环境及客体的识别。其概念与数据挖掘、机器学习类似。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

降采样技术

降采样是数位信号处理领域中的一种多速频数字信号处理(multi-rate digital signal processing)系统中采样率转换(sample rate conversion)技术的一种,或指代用来降低信号采样率的过程,与插值相反——插值用来增加取样频率——降采样通常用于降低数据传输速率或者数据大小。因为降采样会有混叠的情形发生,系统中具有降采样功能的部分称为降频器(decimator)。

注意力机制技术

我们可以粗略地把神经注意机制类比成一个可以专注于输入内容的某一子集(或特征)的神经网络. 注意力机制最早是由 DeepMind 为图像分类提出的,这让「神经网络在执行预测任务时可以更多关注输入中的相关部分,更少关注不相关的部分」。当解码器生成一个用于构成目标句子的词时,源句子中仅有少部分是相关的;因此,可以应用一个基于内容的注意力机制来根据源句子动态地生成一个(加权的)语境向量(context vector), 然后网络会根据这个语境向量而不是某个固定长度的向量来预测词。

表征学习技术

在机器学习领域,表征学习(或特征学习)是一种将原始数据转换成为能够被机器学习有效开发的一种技术的集合。在特征学习算法出现之前,机器学习研究人员需要利用手动特征工程(manual feature learning)等技术从原始数据的领域知识(domain knowledge)建立特征,然后再部署相关的机器学习算法。虽然手动特征工程对于应用机器学习很有效,但它同时也是很困难、很昂贵、很耗时、并依赖于强大专业知识。特征学习弥补了这一点,它使得机器不仅能学习到数据的特征,并能利用这些特征来完成一个具体的任务。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

数据库技术

数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增、截取、更新、删除等操作。 所谓“数据库”系以一定方式储存在一起、能予多个用户共享、具有尽可能小的冗余度、与应用程序彼此独立的数据集合。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

高斯过程技术

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

插值技术

数学的数值分析领域中,内插或称插值(英语:interpolation)是一种通过已知的、离散的数据点,在范围内推求新数据点的过程或方法。求解科学和工程的问题时,通常有许多数据点借由采样、实验等方法获得,这些数据可能代表了有限个数值函数,其中自变量的值。而根据这些数据,我们往往希望得到一个连续的函数(也就是曲线);或者更密集的离散方程与已知数据互相吻合,这个过程叫做拟合。

监督学习技术

监督式学习(Supervised learning),是机器学习中的一个方法,可以由标记好的训练集中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。训练集是由一系列的训练范例组成,每个训练范例则由输入对象(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

图像生成技术

图像生成(合成)是从现有数据集生成新图像的任务。

语义分割技术

语义分割,简单来说就是给定一张图片,对图片中的每一个像素点进行分类。图像语义分割是AI领域中一个重要的分支,是机器视觉技术中关于图像理解的重要一环。

在线学习技术

在计算机科学中,在线学习是一种机器学习方法。和立即对整个训练数据集进行学习的批处理学习技术相反,在线学习的数据按顺序可用,并在每个步骤使用未来数据更新最佳预测器。

多任务学习技术

图像分类技术

图像分类,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

百度机构

百度是全球最大的中文搜索引擎,是一家互联网综合信息服务公司,更是全球领先的人工智能平台型公司。2000年1月1日创立于中关村,公司创始人李彦宏拥有“超链分析”技术专利,也使中国成为美国、俄罗斯、和韩国之外,全球仅有的4个拥有搜索引擎核心技术的国家之一。

https://www.baidu.com/
联想机构

联想集团是1984年中国科学院计算技术研究所投资20万元人民币,由11名科技人员创办,是中国的一家在信息产业内多元化发展的大型企业集团,和富有创新性的国际化的科技公司。 从1996年开始,联想电脑销量一直位居中国国内市场首位;2005年,联想集团收购IBM PC(Personal computer,个人电脑)事业部;2013年,联想电脑销售量升居世界第一,成为全球最大的PC生产厂商。2014年10月,联想集团宣布了该公司已经完成对摩托罗拉移动的收购。 作为全球电脑市场的领导企业,联想从事开发、制造并销售可靠的、安全易用的技术产品及优质专业的服务,帮助全球客户和合作伙伴取得成功。联想公司主要生产台式电脑、服务器、笔记本电脑、智能电视、打印机、掌上电脑、主板、手机、一体机电脑等商品。 自2014年4月1日起, 联想集团成立了四个新的、相对独立的业务集团,分别是PC业务集团、移动业务集团、企业级业务集团、云服务业务集团。2016年8月,全国工商联发布“2016中国民营企业500强”榜单,联想名列第四。 2018年12月,世界品牌实验室编制的《2018世界品牌500强》揭晓,排名第102。

实例分割技术

实例分割是检测和描绘出现在图像中的每个不同目标物体的任务。

目标检测技术

一般目标检测(generic object detection)的目标是根据大量预定义的类别在自然图像中确定目标实例的位置,这是计算机视觉领域最基本和最有挑战性的问题之一。近些年兴起的深度学习技术是一种可从数据中直接学习特征表示的强大方法,并已经为一般目标检测领域带来了显著的突破性进展。

人脸检测技术

人脸检测(face detection)是一种在任意数字图像中找到人脸的位置和大小的计算机技术。它可以检测出面部特征,并忽略诸如建筑物、树木和身体等其他任何东西。有时候,人脸检测也负责找到面部的细微特征,如眼睛、鼻子、嘴巴等的精细位置。

感受野技术

一个感觉神经元的感受野是指这个位置里适当的刺激能够引起该神经元反应的区域。感受野一词主要是指听觉系统、本体感觉系统和视觉系统中神经元的一些性质。

3D目标检测技术

3D目标检测主要对对象类别进行分类,并根据3D传感器数据估算物理对象的定向3D边界框。

在线多目标跟踪技术

在线多目标跟踪是多目标跟踪的子任务。按照轨迹形成的时间顺序,多目标跟踪可以分为在线方式的跟踪算法以及离线形式的跟踪过程。如果跟踪的顺序是逐帧方式的,即为在线方式的目标跟踪方法。

暂无评论
暂无评论~