王子嘉作者H4O编辑

如何找到好的主题模型量化评价指标?这是一份热门方法总结

本文就主题模型的评价指标进行讨论,对当下比较热门的评价方法进行总结,并对未来这一领域可能的发展方向进行展望。

1 主题模型

宏观上讲,主题模型就是用来在一系列文档中发现抽象主题的一种统计模型,一般来说,这些主题是由一组词表示了。如果一篇文章有一个中心思想,那么一些特定词语会更频繁的出现。比方说,如果一篇文章是在讲狗的,那「狗」和「骨头」等词出现的频率会高些。如果一篇文章是在讲猫的,那「猫」和「鱼」等词出现的频率会高些。而有些词例如「这个」、「和」大概在两篇文章中出现的频率会大致相等。如果一篇文章 10% 和猫有关,90% 和狗有关,那么和狗相关的关键字出现的次数大概会是和猫相关的关键字出现次数的 9 倍。而一个主题模型则会用数学框架来体现文档的这种特点。

如图 1 所示,最左边的就是各个主题(提前确定好的),然后在文中不同的颜色对应不同的主题,比如黄色可能对应狗,那么文中跟狗相关的词都会标成黄色,这样最后就能获得一个各个主题可能的主题分布。
图 1:主题模型(图源:https://medium.com/@tengyuanchang/%E7%9B%B4%E8%A7%80%E7%90%86%E8%A7%A3-lda-latent-dirichlet-allocation-%E8%88%87%E6%96%87%E4%BB%B6%E4%B8%BB%E9%A1%8C%E6%A8%A1%E5%9E%8B-ab4f26c27184)
 
本文主要是介绍主题模型的量化评价指标,因此不对主题模型做过多解释。如果对主题模型没有什么基础的,可以看一下机器之心发过的一篇比较适合入门的教程,有需要可以自取。同时,除了教程中提到的这些概率模型,一些深度学习模型(GAN, Encoding-Decoding 等)也开始进入这一领域,比如基于 GAN 的 ATM(Adversarial-neural Topic Model)就有不错的表现。

专业用户独享

本文为机器之心深度精选内容,专业认证后即可阅读全文
开启专业认证
入门归一化量化指标主题模型
1
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

Ranking SVM技术

在机器学习中,排序SVM是支持向量机算法的变体,其用于解决某些排序问题(通过学习进行排序)。 排序SVM算法由Thorsten Joachims于2002年提出来的。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

统计模型技术

统计模型[stochasticmodel;statisticmodel;probabilitymodel]指以概率论为基础,采用数学统计方法建立的模型。有些过程无法用理论分析方法导出其模型,但可通过试验测定数据,经过数理统计法求得各变量之间的函数关系,称为统计模型。常用的数理统计分析方法有最大事后概率估算法、最大似然率辨识法等。常用的统计模型有一般线性模型、广义线性模型和混合模型。统计模型的意义在对大量随机事件的规律性做推断时仍然具有统计性,因而称为统计推断。常用的统计模型软件有SPSS、SAS、Stata、SPLM、Epi-Info、Statistica等。

语料库技术

语料库一词在语言学上意指大量的文本,通常经过整理,具有既定格式与标记;事实上,语料库英文 "text corpus" 的涵意即为"body of text"。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

先验知识技术

先验(apriori ;也译作 先天)在拉丁文中指“来自先前的东西”,或稍稍引申指“在经验之前”。近代西方传统中,认为先验指无需经验或先于经验获得的知识。先验知识不依赖于经验,比如,数学式子2+2=4;恒真命题“所有的单身汉一定没有结婚”;以及来自纯粹理性的推断“本体论证明”

WordNet技术

WordNet是由普林斯顿大学心理学家、语言学家和计算机工程师联合设计的一种基于认知语言学的英语词典。它不是光把单词以字母顺序排列,而是按照单词的意义组成一个“单词的网络”。

主题模型技术

主题模型(Topic Model)在机器学习和自然语言处理等领域是用来在一系列文档中发现抽象主题的一种统计模型。直观来讲,如果一篇文章有一个中心思想,那么一些特定词语会更频繁的出现。比方说,如果一篇文章是在讲狗的,那“狗”和“骨头”等词出现的频率会高些。如果一篇文章是在讲猫的,那“猫”和“鱼”等词出现的频率会高些。而有些词例如“这个”、“和”大概在两篇文章中出现的频率会大致相等。但真实的情况是,一篇文章通常包含多种主题,而且每个主题所占比例各不相同。因此,如果一篇文章10%和猫有关,90%和狗有关,那么和狗相关的关键字出现的次数大概会是和猫相关的关键字出现次数的9倍。一个主题模型试图用数学框架来体现文档的这种特点。主题模型自动分析每个文档,统计文档内的词语,根据统计的信息来断定当前文档含有哪些主题,以及每个主题所占的比例各为多少。

聚类技术

将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于分类学,但是聚类不等于分类。聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

机器之心机构

机器之心,成立于2014年,是国内最具影响力、最专业、唯一用于国际品牌的人工智能信息服务与产业服务平台。目前机器之心已经建立起涵盖媒体、数据、活动、研究及咨询、线下物理空间于一体的业务体系,为各类人工智能从业者提供综合信息服务和产业服务。

https://www.jiqizhixin.com/
暂无评论
暂无评论~