参与魔王 杜伟

把CNN里的乘法全部去掉会怎样?华为提出移动端部署神经网络新方法

前不久,机器之心报道过北大、华为诺亚等合著的一篇论文,探讨了不用乘法用加法能不能做深度学习。最近,我们又看到华为的另一篇论文,这一次没有用加法替代乘法,而是用「按位移位」和「按位取反」来取代乘法运算。

深度学习模型,尤其是深度卷积神经网络(DCNN),在多个计算机视觉应用中获得很高的准确率。但是,在移动环境中部署时,高昂的计算成本和巨大的耗电量成为主要瓶颈。而大量使用乘法的卷积层和全连接层正是计算成本的主要贡献者。

论文链接:https://arxiv.org/pdf/1905.13298.pdf

华为的这篇论文提出了解决该问题的新方法,即引入两种新型运算:卷积移位(convolutional shift)和全连接移位(fully-connected shift),从而用按位移位(bitwise shift)和按位取反(bitwise negation)来取代乘法。使用了卷积移位和全连接移位的神经网络架构族即 DeepShift 模型。DeepShift 模型可以在不使用乘法的情况下实现,且在 CIFAR10 数据集上获得了高达 93.6% 的准确率,在 ImageNet 数据集上获得了 70.9%/90.13% 的 Top-1/Top-5 准确率。

研究者将多种著名 CNN 架构的卷积层和全连接层分别进行卷积移位和全连接移位转换,并进行了大量实验。实验结果表明,有些模型的 Top-1 准确率下降程度低于 4%,Top-5 准确率下降程度低于 1.5%。

所有实验均使用 PyTorch 框架完成,训练和运行代码也已经发布。

代码地址:https://github.com/mostafaelhoushi/DeepShift

引言

越来越多的深度神经网络针对移动和 IoT 应用而开发。边缘设备通常电量和价格预算较低,且内存有限。此外,内存和计算之间的通信量在 CNN 的电量需求中也占主要地位。如果设备和云之间的通信成为必要(如在模型更新等情况下),那么模型大小将影响连接成本。因此,对于移动/IoT 推断应用而言,模型优化、模型规模缩小、加速推断和降低能耗是重要的研究领域。

目前已有多种方法可以解决这一需求,这些方法可分为三类:

第一类方法是从头开始构建高效模型,从而得到新型网络架构,但要找出最适合的架构需要尝试多个架构变体,而这需要大量训练资源;


第二类方法是从大模型开始。由于网络中存在一些冗余参数,这些参数对输出没有太大贡献,因而我们可以基于参数对输出的贡献程度对它们进行排序。然后修剪掉排序较低的参数,这不会对准确率造成太大影响。参数排序可以按照神经元权重的 L1/L2 均值(即平均激活)进行,或者按照非零神经元在某个验证集上的比例进行。剪枝完成后,模型准确率会下降,因此需要进一步执行模型训练来恢复准确率。一次性修剪太多参数可能导致输出准确率大幅下降,因此在实践中,通常迭代地使用「剪枝-重新训练」这一循环来执行剪枝操作。这可以降低模型大小,并加快速度;


第三类方法是从大模型开始,然后用量化技术来缩减模型大小。在一些案例中,量化后的模型被重新训练,以恢复部分准确率。


这些方法的重要魅力在于:它们可以轻松应用于多种网络,不仅能够缩减模型大小,还能降低在底层硬件上所需的复杂计算单元数量。这带来了更小的模型占用、更少的工作记忆(和缓存)、在支持平台上的更快计算,以及更低的能耗。

此外,一些优化技术用二值 XNOR 运算来替代乘法。此类技术在小型数据集(如 MNIST 或 CIFAR10)上可能有较高的准确率,但在复杂数据集(如 ImageNet)上准确率会严重下降。

华为的这篇论文提出两种新型运算——卷积移位和全连接移位,用按位移位和按位取反来取代乘法,从而降低 CNN 的计算成本和能耗。这一神经网络架构族即为 DeepShift 模型。该方法主要使用 2 的幂或按位移位从头开始执行 one-shot 训练,或者对预训练模型进行转换。

DeepShift 网络
图 1:(a) 原始线性算子 vs 本研究提出的移位线性算子;(b) 原始卷积算子 vs 本研究提出的移位卷积算子。

如上图 1 所示,本论文的主要概念是用按位移位和按位取反来替代乘法运算。如果输入数字的底层二进制表示 A 是整数或固定点形式,则向左(或向右)按位移动 s 位在数学层面上等同于乘以 2 的正(负)指数幂:
按位移位仅等同于乘以正数,因为对于任意 s 值,都有 2_±s > 0。但在神经网络训练过程中,搜索空间中必须存在乘以负数的情况,尤其是在卷积神经网络中,其滤波器的正负值可用于检测边。因此,我们还需要使用取反运算,即:
与按位移位类似,取反运算的计算成本较低,因为它只需要对数字返回 2 的补码。

下文将介绍该研究提出的新型算子 LinearShift 和 ConvShift,它们用按位移位和取反取代了乘法:
其中 s 是移位值,n 是取反值。在经典的 CPU 架构中,按位移位和按位取反仅使用 1 个时钟周期,而浮点乘法可能需要 10 个时钟周期。

LinearShift 算子
其中输入 x 可表示为矩阵 B × m_in,输出 y 可表示为矩阵 B × m_out,W 是可训练权重矩阵 m_in × m_out,b 是可训练偏置向量 m_out × 1。B 是批大小,m_in 是输入特征大小,m_out 是输出特征大小。

该线性算子的反向传播可表达为:
其中 ∂L/∂y 是运算的梯度输入(运算输出的模型损失 L 的导数),∂L/∂x 是运算的梯度输出(运算输入的模型损失的导数),∂L/∂W 是运算权重的模型损失的导数。本论文提出该移位线性算子,在其前向传播中用按位移位和取反替代了矩阵乘法。其前向传播可定义为:
其中 N 是取反矩阵,S 是移位值矩阵,· 表示这两个矩阵的对应元素乘法。B 和 S 的大小是 m_in × m_out,b 是偏置向量,类似于原始线性算子。S、N 和 b 都是可训练的参数。

为了帮助推导后向传播,研究者使用项 V = (−1)^round(N) ˙ (2)^round(S),得到:
注意,反向传播导致 -1 和 2 的幂存在非整数值。但是,在前向传播中,它们被四舍五入,以实现按位取反和移位。

ConvShift 算子

原始卷积算子的前向传播可表达为:
其中 W 的维度是 c_out × c_in × h × w,其中 c_in 是输入通道大小,c_out 是输出通道大小,h 和 w 分别是卷积滤波器的高和宽。LeCun 等 [1999] 将卷积的反向传播表示为:
类似地,本研究提出的卷积移位(即 ConvShift)算子的前向传播可表示为:
其中 N 和 S 分别表示取反和移位矩阵,维度为 c_out × c_in × h × w。类似地,为了推导反向传播,研究者使用项 V = (−1)^round(N) ˙ (2)^round(S),得到:
基准测试结果

研究者在 3 个数据集上测试了模型的训练和推断结果:MNIST、CIFAR10 和 ImageNet 数据集。

MNIST 数据集

下表 1 展示了模型在 MNIST 验证集上的准确率。我们可以看到,从头训练得到的 DeepShift 模型的准确率下降程度超过 13%,不过仅转换预训练权重得到的 DeepShift 版本准确率下降程度较小,而基于转换权重进行后续训练则使验证准确率有所提升,甚至超过了原版模型的准确率。
CIFAR10 数据集

下表 2 展示了模型在 CIFAR10 验证集上的评估结果。我们注意到从头训练得到的 DeepShift 版本出现了严重的准确率下降,而基于转换预训练权重训练得到的 DeepShift 模型准确率下降幅度较小(不到 2%)。

值得注意的是,对于未经进一步训练的转换权重,宽度更大、复杂度更高的模型取得的结果优于低复杂度模型。这或许可以解释为,模型复杂度的提升补偿了运算被转换为 ConvShift 或 LinearShift 导致的精度下降。
ImageNet 数据集

下表 3 展示了模型在 ImageNet 数据集上的结果,我们从中可以看到不同的模型结果迥异。最好的性能结果来自 ResNet152,其 Top-1 和 Top-5 准确率分别是 75.56% 和 92.75%。值得注意的是,由于时间限制,一些模型仅训练了 4 个 epoch。进行更多训练 epoch 可能带来更高的准确率。
复杂度较高的模型被准换为 DeepShift 后,结果通常更好。MobileNetv2 等「难缠」模型在移除所有乘法运算后准确率仅降低了约 6%。与其他加速方法(如 XNOR 网络、量化或剪枝)相比,这无疑是巨大的优势,这些方法对 MobileNet 的优化带来负面效果。然而,其他「难缠」网络(如 SqueezeNet)的准确率则出现了大幅下降。

为什么 MobileNetv2 的权重被转换后,在未经后续训练的情况下准确率几乎为 0?而在训练几个 epoch 后,Top-5 准确率竟然超过 84%?这一点还有待分析。
理论神经网络CNN华为
3
相关数据
基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

模型优化技术

像卷积神经网络(CNN)这样的深度学习模型具有大量的参数;实际上,我们可以调用这些超参数,因为它们原本在模型中并没有被优化。你可以网格搜索这些超参数的最优值,但需要大量硬件计算和时间。改进模型的最佳方法之一是基于在你的领域进行过深入研究的专家的设计和体系结构,他们通常拥有强大的硬件可供使用。常见的简单模型优化技巧包括迁移学习、dropout、学习率调整等

推荐文章
暂无评论
暂无评论~