屈希峰作者大数据DT来源文婧编辑

Python数据可视化:5段代码搞定散点图绘制与使用,值得收藏

什么是散点图?可以用来呈现哪些数据关系?在数据分析过程中可以解决哪些问题?怎样用Python绘制散点图?本文逐一为你解答。

01 概述

散点图(Scatter)又称散点分布图,是以一个变量为横坐标,另一个变量为纵坐标,利用散点(坐标点)的分布形态反映变量统计关系的一种图形。

特点是能直观表现出影响因素和预测对象之间的总体关系趋势。优点是能通过直观醒目的图形方式反映变量间关系的变化形态,以便决定用何种数学表达方式来模拟变量之间的关系。散点图不仅可传递变量间关系类型的信息,还能反映变量间关系的明确程度。

通过观察散点图数据点的分布情况,我们可以推断出变量间的相关性。如果变量之间不存在相互关系,那么在散点图上就会表现为随机分布的离散的点,如果存在某种相关性,那么大部分的数据点就会相对密集并以某种趋势呈现。

数据的相关关系大体上可以分为:正相关(两个变量值同时增长)、负相关(一个变量值增加,另一个变量值下降)、不相关、线性相关、指数相关等,表现在散点图上的大致分布如图1所示。那些离点集群较远的点我们称之为离群点或者异常点。
▲图1 散点数据的相关性

在Python体系中,可使用Scipy、Statsmodels或Sklearn等对离散点进行回归分析,归纳现有数据并进行预测分析。对于那些变量之间存在密切关系,但是这些关系又不像数学公式和物理公式那样能够精确表达的,散点图是一种很好的图形工具,可以进行直观展示,如图2所示。
▲图2 散点数据拟合(线性)

但是在分析过程中需要注意,变量之间的相关性并不等同于确定的因果关系,仍需要考虑其他影响因素。

02 实例

散点图代码示例如下所示。

代码示例①
# 数据  
x = [1, 2, 3, 4, 5]  
y = [6, 7, 2, 4, 5]  
# 画布:尺寸  
p = figure(plot_width=400, plot_height=400)  
# 画图  
p.scatter(x, y,   
          size=20, # screen units  显示器像素单位  
#           radius=1,  # data-space units  坐标轴单位  
          marker="circle", color="navy", alpha=0.5)    
# p.circle(x, y, size=20, color="navy", alpha=0.5)  
# 显示  
show(p)  
运行结果如图3所示。
▲图3 代码示例①运行结果

代码示例①中第7行使用scatter方法进行散点图绘制;第11行采用circle方法进行散点图绘制(推荐)。关于这两个方法的参数说明如下。

p.circle(x, y, **kwargs)参数说明。
  • x (str or seq[float]) : 离散点的x坐标,列名或列表
  • y (str or seq[float]) : 离散点的y坐标
  • size (str or list[float]) : 离散点的大小,屏幕像素单位
  • marker (str, or list[str]) : 离散点标记类型名称或名称列表
  • color (color value, optional) : 填充及轮廓线的颜色
  • source (`~bokeh.models.sources.ColumnDataSource`) : Bokeh专属数据格式
  • **kwargs: 其他自定义属性;其中标记点类型marker默认值为:“marker="circle"”,可以用“radius”定义圆的半径大小(单位为坐标轴单位)。这在Web数据化中非常有用,不同的方式,在不同的设备上的展示效果会有些许差异。
p.scatter(x, y, **kwargs)参数说明。
  • (:class:`~bokeh.core.properties.NumberSpec` ) : x坐标
  • y (:class:`~bokeh.core.properties.NumberSpec` ) : y坐标
  • angle (:class:`~bokeh.core.properties.AngleSpec` ) : 旋转角度
  • angle_units (:class:`~bokeh.core.enums.AngleUnits`) : (default: 'rad') 默认:弧度,也可以采用度('degree')
  • fill_alpha (:class:`~bokeh.core.properties.NumberSpec` ) : (default: 1.0) 填充透明度,默认:不透明
  • fill_color (:class:`~bokeh.core.properties.ColorSpec` ) : (default: 'gray') 填充颜色,默认:灰色
  • line_alpha (:class:`~bokeh.core.properties.NumberSpec` ) : (default: 1.0) 轮廓线透明度,默认:不透明
  • line_cap  (:class:`~bokeh.core.enums.LineCap` ) : (default: 'butt') 线端(帽)
  • line_color (:class:`~bokeh.core.properties.ColorSpec` ) : (default: 'black') 轮廓线颜色,默认:黑色
  • line_dash (:class:`~bokeh.core.properties.DashPattern` ) : (default: []) 虚线
  • line_dash_offset (:class:`~bokeh.core.properties.Int` ) : (default: 0) 虚线偏移
  • line_join (:class:`~bokeh.core.enums.LineJoin`  ) : (default: 'bevel')
  • line_width (:class:`~bokeh.core.properties.NumberSpec` ) : (default: 1) 线宽,默认:1
另外,Bokeh中的一些属性,如`~bokeh.core.properties.NumberSpec `、`~bokeh.core.properties.ColorSpec`可以在Jupyter notebook中通过`import bokeh.core.properties.NumberSpec `导入该属性,然后再查看其详细的使用说明。

代码示例②
# 数据  
N = 4000  
x = np.random.random(size=N) * 100  # 随机点x坐标  
y = np.random.random(size=N) * 100  # 随机点y坐标  
radii = np.random.random(size=N) * 1.5  # 随机半径  
# 工具条  
TOOLS="hover,crosshair,pan,wheel_zoom,box_zoom,reset,tap,save,box_select,poly_select,lasso_select"  
# RGB颜色,画布1,绘图1  
colors2 = ["#%02x%02x%02x" % (int(r), int(g), 150) for r, g in zip(50+2*x, 30+2*y)]  
p1 = figure(width=300, height=300, tools=TOOLS)  
p1.scatter(x,y, radius=radii, fill_color=colors2, fill_alpha=0.6, line_color=None)  
# RGB颜色,画布2,绘图2  
colors2 = ["#%02x%02x%02x" % (150, int(g), int(b)) for g, b in zip(50+2*x, 30+2*y)]  
p2 = figure(width=300, height=300, tools=TOOLS)  
p2.scatter(x,y, radius=radii, fill_color=colors2, fill_alpha=0.6, line_color=None)  
# 直接显示  
# show(p1)  
# show(p2)  
# 网格显示  
from bokeh.layouts import gridplot  
grid = gridplot([[p1, p2]])   
show(grid)  
运行结果如图4所示。
▲图4 代码示例②运行结果

代码示例②中第11行和第15行使用scatter方法进行散点图绘制。第7行工具条中的不同工具定义,第9行数据点的不同颜色定义,第20行和第21行采用网格显示图形,可以提前了解这些技巧,具体使用方法在下文中会专门进行介绍。

代码示例③
from bokeh.sampledata.iris import flowers  
# 配色  
colormap = {'setosa': 'red', 'versicolor': 'green', 'virginica': 'blue'}  
colors = [colormap[x] for x in flowers['species']]  
# 画布  
p = figure(title = "Iris Morphology")  
# 绘图  
p.circle(flowers["petal_length"], flowers["petal_width"],  
         color=colors, fill_alpha=0.2, size=10)  
# 其他  
p.xaxis.axis_label = 'Petal Length'  
p.yaxis.axis_label = 'Petal Width'  
# 显示  
show(p)  

运行结果如图5所示。

代码示例③再次对前面提到的鸢尾花的数据集进行分析,图5中x轴为花瓣长度,y轴为花瓣宽度,据此可以将该散点数据聚类为3类。同时,该段代码展示了常规图形的绘制流程,含x、y轴的标签。
▲图5 代码示例③运行结果

代码示例④
from bokeh.layouts import column, gridplot  
from bokeh.models import BoxSelectTool, Div  
# 数据  
x = np.linspace(0, 4*np.pi, 100)  
y = np.sin(x)  
# 工具条  
TOOLS = "wheel_zoom,save,box_select,lasso_select,reset"  
# HTML代码  
div = Div(text=""" 
<p>Bokeh中的画布可通过多种布局方式进行显示;</p> 
<p>通过配置参数BoxSelectTool,在图中用鼠标选择数据,采用不同方式进行交互。</p>
""") # HTML代码直接作为一个图层显示,也可以作为整个HTML文档  
# 视图属性  
opts = dict(tools=TOOLS, plot_width=350, plot_height=350)  
# 绘图1  
p1 = figure(title="selection on mouseup", **opts)  
p1.circle(x, y, color="navy", size=6, alpha=0.6)  
# 绘图2  
p2 = figure(title="selection on mousemove", **opts)  
p2.square(x, y, color="olive", size=6, alpha=0.6)  
p2.select_one(BoxSelectTool).select_every_mousemove = True  
# 绘图3  
p3 = figure(title="default highlight", **opts)  
p3.circle(x, y, color="firebrick", alpha=0.5, size=6)  
# 绘图4  
p4 = figure(title="custom highlight", **opts)  
p4.square(x, y, color="navy", size=6, alpha=0.6,  
          nonselection_color="orange", nonselection_alpha=0.6)  
# 布局  
layout = column(div,  
                gridplot([[p1, p2], [p3, p4]], toolbar_location="right"),  
                sizing_mode="scale_width")  # sizing_mode 根据窗口宽度缩放图像  
# 绘图  
show(layout)  



Bokeh中的画布可通过多种布局方式进行显示:通过配置视图参数,在视图中进行交互可视化。运行结果如图6所示。
▲图6 代码示例④运行结果

代码示例④让读者感受一下Bokeh的交互效果,Div方法可以直接使用HTML标签,其作为一个独立的图层进行显示(第30行)。另外需要注意,可以通过`nonselection_`,`nonselection_alpha`或`nonselection_fill_alpha`设套索置选取数据时的散点的颜色、透明度等。

代码示例⑤

from bokeh.models import (  
       ColumnDataSource,  
       Range1d, DataRange1d,  
       LinearAxis, SingleIntervalTicker, FixedTicker,  
       Label, Arrow, NormalHead,  
       HoverTool, TapTool, CustomJS)  
from bokeh.sampledata.sprint import sprint  
abbrev_to_country = {  
      "USA": "United States",  
      "GBR": "Britain",  
      "JAM": "Jamaica",  
      "CAN": "Canada",  
      "TRI": "Trinidad and Tobago",  
      "AUS": "Australia",  
      "GER": "Germany",  
      "CUB": "Cuba",  
      "NAM": "Namibia",  
      "URS": "Soviet Union",  
      "BAR": "Barbados",  
      "BUL": "Bulgaria",  
      "HUN": "Hungary",  
      "NED": "Netherlands",  
      "NZL": "New Zealand",  
      "PAN": "Panama",  
      "POR": "Portugal",  
      "RSA": "South Africa",  
      "EUA": "United Team of Germany",  
}  
gold_fill   = "#efcf6d"  
gold_line   = "#c8a850"  
silver_fill = "#cccccc"  
silver_line = "#b0b0b1"  
bronze_fill = "#c59e8a"  
bronze_line = "#98715d"  
fill_color = { "gold": gold_fill, "silver": silver_fill, "bronze": bronze_fill }  
line_color = { "gold": gold_line, "silver": silver_line, "bronze": bronze_line }  
def selected_name(name, medal, year):  
    return name if medal == "gold" and year in [1988, 1968, 1936, 1896] else ""  
t0 = sprint.Time[0]  
sprint["Abbrev"]       = sprint.Country  
sprint["Country"]      = sprint.Abbrev.map(lambda abbr: abbrev_to_country[abbr])  
sprint["Medal"]        = sprint.Medal.map(lambda medal: medal.lower())  
sprint["Speed"]        = 100.0/sprint.Time  
sprint["MetersBack"]   = 100.0*(1.0 - t0/sprint.Time)  
sprint["MedalFill"]    = sprint.Medal.map(lambda medal: fill_color[medal])  
sprint["MedalLine"]    = sprint.Medal.map(lambda medal: line_color[medal])  
sprint["SelectedName"] = sprint[["Name", "Medal", "Year"]].apply(tuple, axis=1).map(lambda args: selected_name(*args))  
source = ColumnDataSource(sprint)  
xdr = Range1d(start=sprint.MetersBack.max()+2, end=0)               # XXX: +2 is poor-man's padding (otherwise misses last tick)  
ydr = DataRange1d(range_padding=4, range_padding_units="absolute")  
plot = figure(  
    x_range=xdr, y_range=ydr,  
    plot_width=1000, plot_height=600,  
    toolbar_location=None,  
    outline_line_color=None, y_axis_type=None)  
plot.title.text = "Usain Bolt vs. 116 years of Olympic sprinters"  
plot.title.text_font_size = "14pt"  
plot.xaxis.ticker = SingleIntervalTicker(interval=5, num_minor_ticks=0)  
plot.xaxis.axis_line_color = None  
plot.xaxis.major_tick_line_color = None  
plot.xgrid.grid_line_dash = "dashed"  
yticker = FixedTicker(ticks=[1900, 1912, 1924, 1936, 1952, 1964, 1976, 1988, 2000, 2012])  
yaxis = LinearAxis(ticker=yticker, major_tick_in=-5, major_tick_out=10)  
plot.add_layout(yaxis, "right")  
medal = plot.circle(x="MetersBack", y="Year", radius=dict(value=5, units="screen"),  
    fill_color="MedalFill", line_color="MedalLine", fill_alpha=0.5, source=source, level="overlay")  
plot.text(x="MetersBack", y="Year", x_offset=10, y_offset=-5, text="SelectedName",  
    text_align="left", text_baseline="middle", text_font_size="9pt", source=source)  
no_olympics_label = Label(  
    x=7.5, y=1942,  
    text="No Olympics in 1940 or 1944",  
    text_align="center", text_baseline="middle",  
    text_font_size="9pt", text_font_style="italic", text_color="silver")  
no_olympics = plot.add_layout(no_olympics_label)  
x = sprint[sprint.Year == 1900].MetersBack.min() - 0.5  
arrow = Arrow(x_start=x, x_end=5, y_start=1900, y_end=1900, start=NormalHead(fill_color="black", size=6), end=None, line_width=1.5)  
plot.add_layout(arrow)  
meters_back = Label(  
    x=5, x_offset=10, y=1900,  
    text="Meters behind 2012 Bolt",  
    text_align="left", text_baseline="middle",  
    text_font_size="10pt", text_font_style="bold")  
plot.add_layout(meters_back)  
disclaimer = Label(  
    x=0, y=0, x_units="screen", y_units="screen",  
    text="This chart includes medals for the United States and Australia in the \"Intermediary\" Games of 1906, which the I.O.C. does not formally recognize.",  
    text_font_size="8pt", text_color="silver")  
plot.add_layout(disclaimer, "below")  
tooltips = """ 
<div> 
    <span style="font-size: 15px;">@Name</span>  
    <span style="font-size: 10px; color: #666;">(@Abbrev)</span> 
</div> 
<div> 
    <span style="font-size: 17px; font-weight: bold;">@Time{0.00}</span>  
    <span style="font-size: 10px; color: #666;">@Year</span> 
</div> 
<div style="font-size: 11px; color: #666;">@{MetersBack}{0.00} meters behind</div> 
"""  
plot.add_tools(HoverTool(tooltips=tooltips, renderers=[medal]))  
open_url = CustomJS(args=dict(source=source), code=""" 
source.inspected._1d.indices.forEach(function(index) { 
    var name = source.data["Name"][index]; 
    var url = "http://en.wikipedia.org/wiki/" + encodeURIComponent(name); 
    window.open(url); 
}); 
""")  
plot.add_tools(TapTool(callback=open_url, renderers=[medal], behavior="inspect"))
show(plot)  


运行结果如图7所示。
▲图7 代码示例⑤运行结果

代码示例⑤展示了短跑选手博尔特与116年来奥运会其他短跑选手成绩的对比情况。上述代码包含数据预处理、自定义绘图属性、数据标记、交互式显示等较为复杂的操作,不作为本文重点;读者仅需要知道通过哪些代码可以实现哪些可视化的效果即可。

本文通过5个代码示例展示了散点图的绘制技巧,绘制难度也逐渐增大,与此同时,展现的效果也越来越好。读者在学习过程中可以多思考,在这个示例中哪些数据需要交互式展示,采用哪种展示方式更好。

关于作者:屈希峰,资深Python工程师,Bokeh领域的实践者和布道者,对Bokeh有深入的研究。擅长Flask、MongoDB、Sklearn等技术,实践经验丰富。知乎多个专栏(Python中文社区、Python程序员、大数据分析挖掘)作者,专栏累计关注用户十余万人。

本文摘编自《Python数据可视化:基于Bokeh的可视化绘图》,经出版方授权发布。

THU数据派
THU数据派

THU数据派"基于清华,放眼世界",以扎实的理工功底闯荡“数据江湖”。发布全球大数据资讯,定期组织线下活动,分享前沿产业动态。了解清华大数据,敬请关注姐妹号“数据派THU”。

工程散点图代码数据可视化Python
4
相关数据
数据分析技术

数据分析是一类统计方法,其主要特点是多维性和描述性。有些几何方法有助于揭示不同的数据之间存在的关系,并绘制出统计信息图,以更简洁的解释这些数据中包含的主要信息。其他一些用于收集数据,以便弄清哪些是同质的,从而更好地了解数据。 数据分析可以处理大量数据,并确定这些数据最有用的部分。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

回归分析技术

回归分析是一种用于估计变量之间的关系(当一个自变量变化而其它变量固定时,因变量会如何变化)的统计过程,在预测任务中有广泛的应用。回归分析模型有不同的种类,其中最流行的是线性回归和 逻辑回归(Logistic Regression)。另外还有多变量回归、泊松回归、逐步回归、脊回归(Ridge Regression)、套索回归(Lasso Regression)和多项式回归等等。随机梯度下降(SGD)就是一种起源于回归分析的常用方法,可用于控制复杂度。

聚类技术

将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于分类学,但是聚类不等于分类。聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

知乎机构

作为中文互联网综合性内容平台,知乎将AI广泛应用与社区,构建了人、内容之间的多元连接,提升了社区的运转效率和用户体验。知乎通过内容生产、分发,社区治理等领域的AI应用,也创造了独有的技术优势和社区AI创新样本。

https://www.zhihu.com
数据可视化技术

数据可视化被许多学科视为现代视觉传达的等价物。为了清晰有效地传递信息,数据可视化使用统计图形、图表、信息图和其他工具。数字数据可以使用点、线或条编码,以视觉传达定量消息。有效的可视化帮助用户对数据进行分析和推理。它使复杂的数据更容易理解和使用。用户可以根据特定的分析任务进行数据可视化,例如进行比较或理解因果关系,并且图形的设计原则(即,显示比较或显示因果关系)来进行可视化。表通常用于用户查找特定测量的地方,而各种类型的图表用于显示一个或多个变量的数据中的模式或关系。

暂无评论
暂无评论~