林亦霖校对文婧 编辑

关于2020年人工智能行业的七则预言

2020年终于来了。

这是一个曾被众多科幻题材设定为“未来”的遥远年代——火星探索、仿生机器人、自动驾驶、基因编辑、混合现实、人脸识别、人造肉……人类曾经的这些“异想天开”,已透过科技的百叶窗缝隙照进我们的日常。

在这些代表未来场景的高新科技里,人工智能无疑是扛鼎关键词。迄今为止,人工智能的发展历史经历了三次高潮和两次低谷,而过去一年,则是人工智能行业发展再次如烈火烹油之势后的第一个“小年”。这一年,人工智能热度有所回落,喧嚣褪去,落地成为主旋律;同样也是这一年,人工智能在沉淀中走向成熟,价值浮现,工业化才是人工智能的真实模样。 

据IDC报告称,到2023年,全球人工智能系统的支出将达到979亿美元,比今年预计的375亿美元有惊人的增长,这意味着未来几年的年增长率将达到28.4%。因此,2020年必将是为人工智能领域下一个十年的创新奠定基调并延续现有势头的关键一年。那么,在新的一年里,人工智能行业发展又将呈现哪些趋势变化,投资人及从业者该对哪些方面多加关注呢?下面,我们结合了多家研究机构报告,对2020年人工智能发展趋势进行分析并解读。

一、政策持续优化行业发展

解读:

我国政府高度重视人工智能的技术进步与产业发展,自2017年起,人工智能已上升国家战略。《新一代人工智能发展规划》提出“到2030年,使中国成为世界主要人工智能创新中心”。为此,我国也出台了系列政策,大力推动人工智能产业发展。目前,国内人工智能产业政策体系已基本成型,主要分为以下三大类:

1、法律法规和伦理规范

开展与人工智能应用相关的民事与刑事责任确认、隐私与产权保护、信息安全利用等法律问题研究,重点围绕自动驾驶、服务机器人等应用基础较好的细分领域,加快研究制定相关安全管理法规,为新技术的加快应用奠定法律基础。 

2、具体产业落地政策 

包括出台针对人工智能中小企业和初创企业的财税优惠政策,通过高新技术企业税收优惠和研发费用加计扣除等政策支持人工智能企业发展,引导市场力量,建立健全人工智能产业发展基金。 

3、推进各类人工智能创新发展 

包括按照国家级科技创新基地布局和框架,推进人工智能创新基地,引导与现有人工智能相关的国家重点实验室、企业国家重点实验室、国家工程实验室等基地,聚焦新一代人工智能的前沿方向开展研究,前瞻布局新一代人工智能重大科技项目。

以下为国内相关政策不完全汇总: 

国家层面 

我国主要人工智能政策规划汇总地方层面

地方主要人工智能政策规划汇总2019年,人工智能在政府工作报告中,从“加快”、“加强”到“深化”,说明它已经走过了萌芽阶段与初步发展阶段,下个阶段将进入快速发展时期,并且更加注重应用落地。2020年政府将继续支持加快人工智能产业发展,人工智能“政策持续催化”将是行业发展趋势之一。

二、5G助推行业加速发展

解读:

5G人工智能发展的重要基础支撑,能够推进人工智能技术与应用快速发展,可以说“有了更好的5G,才会带来更好的人工智能”。

一是5G推进人工智能技术进步。人工智能技术进步的核心在于数据支持,各种类型的海量数据,可以为深度学习人工智能算法提供坚实的素材基础。5G将人与人的通信连接拓展到万物互联,其超高速率和超大连接能力能够创造出史无前例的海量数据,为人工智能从海量数据中学习模式和规则、预测趋势、执行策略等打下很好的基础,有效促进人工智能技术大发展。 

二是5G推进人工智能应用普及。5G的一大功能是边缘计算,可以把计算和存储的能力往前推到接入网。5G之前,人工智能对数据的处理主要在云端进行,在应用端受到很大制约。5G时代,通过边缘计算可实现人工智能在终端侧的应用,实现云端和终端之间良好的衔接、配合、互补,能够解决很多之前解决不了的问题,在车联网、工业互联网、机器人、无人机、智慧城市、医疗等领域带来更多智能化的应用,使人工智能应用更加丰富,实现万物智联。 

随着人工智能技术的进一步成熟,未来企业商业应用能力将成为资本重要考核因素。2019年是5G商用落地元年,5G商用时代的逐渐来临,人工智能技术连接效率也将进一步提升,深度学习数据挖掘、自动程序设计等领域也将在更多的应用领域得到实现,5G将进一步助推行业加速发展。

三、量子计算将增强AI

解读:

如今,神经网络和其他机器学习系统已成为人工智能时代的核心技术。具备机器学习能力的人工智能在某些方面的能力远超人类,不仅在国际象棋和数据挖掘等方面表现出众,而且在人类大脑所擅长的面部识别、语言翻译等方面进展迅速。通过后台的强大算力,这些系统的价值不断凸显。但同时,传统计算机数据处理能力接近极限,而数据却在不断增长。随着产业数据规模的爆炸式增长,深度学习模型网络参数的不断扩增,现有的计算结构及框架,面对海量的数据规模及深层网络结构,处理分析所需的时间、硬件成本非常高,因此亟须更为高效的解决方案。于是,很多研究机构及科技公司都将目光集中到了量子计算领域,例如谷歌、微软英特尔IBM阿里巴巴百度在内的企业纷纷在量子计算方面加以探索。

2019年,谷歌宣称实现了“量子霸权”,即其量子计算器件可执行一个任何经典计算机都无法完成的任务。尽管 IBM 反驳称该任务仍在经典算力之内,但不得不承认,谷歌在硬件上的进展大大增强了行业对超导路线以及对大规模量子计算实现步伐的乐观预期。随着“量子霸权”的成功展示,量子计算将在2020年迎来新一轮的爆发。量子硬件方面,可编程的中等规模有噪量子设备的性能会得到进一步提升并初步具备纠错能力,最终将可在上面运行具有一定实用价值的量子算法,量子人工智能应用也将得到很大的发展。量子软件方面,高质量的量子计算平台和软件将会涌现并与AI和云计算技术实现深度融合。此外,伴随着量子计算生态产业链的初步形成,量子计算必将在更多应用领域获得重视,越来越多的行业巨头陆续投入研发资源进行战略布局,有机会为未来AI和云计算领域带来全新面貌。

四、AI 芯片领域竞争激烈

解读:

AI芯片行业随着人工智能的再次火热,也出现了井喷式发展。近年来,各类势力均在发力AI芯片,参与者包括传统芯片设计、IT厂商、技术公司、互联网以及初创企业等,产品覆盖了CPU、GPU、FPGA、ASIC等。

目前从应用上来看,AI芯片主要有两个方向,一个是在数据中心部署的云端,一个是在消费者终端部署的终端,后者呈现压倒性胜利;小方向上,它们又可划分为两类,分别是视觉芯片和语音芯片。 

在刚刚过去的一年里,AI芯片行业展现出了架构创新、专用芯片、有效算力、开源等特点。而在新的一年里,有这样4大趋势不容忽视:

1、AI语音芯片的竞争加剧

AI应用的两大方向是视觉和语音,相比视觉,语音不仅技术挑战更小,而且已经有出货量非常大的智能音箱产品。在更加激烈的AI竞争中,为了延续优势,强于算法的公司纷纷推出自研AI芯片,比如思必驰

除了算法公司,拥有创新架构AI芯片的探境科技、知存科技、清微智能都在2019年发布了语音芯片,其中探境科技已经拥有了30个合作伙伴,AI语音方案出货达到了百万级,清微智能的AI语音芯片也已经量产,并且产生了营收,知存科技也有多位意向客户。

再加上为AI智能音箱提供芯片的传统芯片公司,AI语音芯片的竞争将变得更加激烈。当然,这种竞争伴随的是市场需求的增加,未来几年,智能家居市场对于AI语音芯片的需求也有望快速增加。

2、云端芯片市场迎来竞争

英伟达和英特尔最先享受到了AI云端芯片市场的红利,其中英伟达在云端AI训练市场的地位更是无人能敌。不过,随着英特尔推出Nervana NNP-T 和 Nervana NNP-I 以及20亿美元收购Habana Labs,还有即将在今年年中推出的独立GPU Xe,英伟达和英特尔在云端AI芯片市场的竞争会更加激烈。在国内,寒武纪、比特大陆、燧原科技等在2019年都推出了云端AI芯片,从细分市场进入云端AI芯片市场,目标是获得一定的市场份额。2020年,巨头和初创公司产品的落地,将让云端AI芯片市场的竞争逐步激烈,并可能在一定程度上削弱英伟达的话语权。

3、端云一体的生态战正式开启

2019年,在云端AI芯片市场非常成功的英伟达和谷歌都相继推出了面向边缘端的AI芯片,或增强边缘端AI芯片的实力。英特尔更是构建了全面的AI芯片类型,迎战AI。其实,不论是科技巨头还是创业公司,都会有端云一体战略,他们希望通过端云一体的战略构建强大的生态,产生很宽的护城河同时保持公司业绩的持续增长,差别在于实现的难度不同。由此看来,随着有实力的公司们端云一体AI芯片战略的开启和落地,2020年的边缘AI芯片初创公司们,将面临更大的生存压力。

4、易用性更为重要

2019年已经有不少商用的AI芯片,但无论是大公司还是初创公司,不少都面临芯片却难以落地的难题,原因也是各不相同,如芯片本身功能不足,芯片不适配应用的需求,易用性不高,选择的行业难以突破等等。因此,芯片的易用性在2020年将变得更加重要,这将从技术上降低客户尝试的成本,加快产品推向市场的时间,也能够弥补硬件迭代速度慢不能很好满足应用需求的痛点。 

五、若干技术方向实现重要突破 

解读: 

总的来说,AI 技术的发展比较平稳,有若干技术方向出现比较重要的突破,也有一方向发展遇到瓶颈。

比如,根据 Google Trend 显示,从 2018 年截至目前,在全球范围内,关键词“Knowledge Graph”的热度总体上呈上升趋势。知识图谱也越来越多地被学术和业界提到并应用于研究和实践中,该领域内的热点研究有:概念图、并行算法、知识表示、图形知识、知识库等,其中概念图是当前的热门话题之一,20 世纪 90 年代以来,其研究热度始终保持在 Top 1;知识表示也是该领域的热点话题。知识图谱作为人工智能技术中的知识容器和孵化器,会对未来 AI 领域的发展起到关键性的作用,预计未来会向自动化的方向前进,并找到更多落地应用场景。 

至于深度学习,这几年这项技术的红利推动了人工智能的研究,激发了大家对AI的热情。它是当前人工智能领域最重要,也是被产业界证明最有效的技术。以深度学习框架为核心的开源深度学习平台大大降低了人工智能技术的开发门槛,有效提高了人工智能应用的质量和效率。2020 年,各行各业将会大规模应用深度学习技术实施创新,加快转型和升级。 

在 NLP 领域,继谷歌推出让人振奋的 BERT 之后,GPT 后来居上,随后又不断出现新的模型,不断打破“前辈”创下的记录,百度的NLP 预训练模型 ERNIE中文任务全面超越 BERT,CMU 和 Google Brain 联手推出了 Bert 的改进版 XLNet,在 20 项任务上超越 BERT,微软亚洲研究院在 ICML 2019 上提出了一个全新的通用预训练方法 MASS,在序列到序列自然语言生成任务中全面超越 BERT 和 GPT。 

计算机视觉领域,当前的热点研究话题包括图像分割图像分类支持向量机、特征提取、目标识别、生物医学研究、目标检测人脸识别、马尔可夫过程等。其中,生成对抗网络(GAN)技术成为当下的研究热点,实际应用也越发炉火纯青,AI 生成图像和视频的效果如此逼真,以至于一些打擦边球的应用产生了不小的负面影响,倒逼立法或规范产生,比如美国加州已签署了两项新法令,其中一项是禁止任何人在选举 60 天内发布有关候选人的 Deepfake 视频,另一项法令则是允许该州居民起诉任何使用 Deepfake 技术将其图像放入色情视频的人。 

六、安全、隐私和道德问题已箭在弦上

解读:

随着AI逐渐飞入寻常百姓家,人们开始对AI技术所引发的隐私和安全问题日益重视,AI与道德的话题也再次闯入大众视野。

在过去的一年中,数据隐私和安全性已成为一个令人难以置信的热门话题。在国内,如AI换脸APP“ZAO”一夜蹿红又被约谈、国内人脸识别第一案等多起关于人脸识别被滥用的网络事件引发大众的质疑和恐慌;在国外,亚马逊、谷歌和苹果纷纷曝出监听、录制和分析用户隐私语音的新闻,也让大众对科技公司收集数据的方式产生质疑;在网络上流传大量虚假图片、虚假视频让人不堪其扰,甚至被不法分子用来牟取暴利的情况下,也有越来越多企业试图利用AI技术参与到甄别虚假图片、视频中来。 

对于企业而言,一方面在运营中使用AI、区块链云计算等技术实现了创收,而另一方面,隐私和数据保护方面的要求也会随之提高。在2020年,安全与隐私保护,将会成为AI最大的瓶颈之一。 

AI应用的边界、隐私数据保护的度在哪里,现在还是未知。社交活动数据、零售数据、金融行为数据、医疗健康数据等被广泛用于AI各种应用场景,的确也朝着为人类带来更多服务的方向发展,但是对于这样的涉及隐私数据利用的监管仍处于探索阶段。任何企业应用与隐私之间需要一个权衡。 

此外,对于龙头企业而言,他们无疑有责任在推动社会进步的路上率先而行。不论是制定公平、可靠和安全、隐私和保障、包容、透明、责任等准则制度,或者是与许多政府机构接触,为如何制定负责任的人工智能相关法律法规,献计献策等,科技巨头应该致力于保证技术始终为人所用。  

七、复合型人才需求愈发强烈

解读: 

一直以来,5G的高速度、低时延、大容量特点都被认为会带来AI、移动XR、自动驾驶等行业的颠覆性的改变。随着2019年6月5G商用牌照正式发放,很多互联网大厂开始为此招兵买马,试图在5G时代抢先一步。尽管资本寒冬的到来让很多企业开始精打细算,但科技公司对于AI和5G人才的需求市场依然非常火热,并展现出以下几个特点:

1、AI和5G人才需求爆发式增长 

对于5G人才而言,2019年以来,市场上对相关人才需求出现了爆发式增长。根据boss直聘的报告显示,去年1-5月,5G人才需求总量已经接近2018年的60%,较2018年同比增长38.9%,需求增速较2018年提高了7个百分点。在薪资方面,5G相关人才平均招聘月薪为14110元,较2018年平均月薪水平高出15.7%,其增幅较2018年高出6个百分点。 

对于AI人才而言,企业的需求更加旺盛,薪资水平也更高。今年4月,猎聘网发布的人才报告显示,2019年第一季度,AI相关职位需求同比增长为44.30%,平均年薪达到26.38万元。 

2、人才需求出现结构性变化 

当前,互联网行业正在告别劳动密集型形式,向着技术驱动、专业能力驱动的方向发展。受此影响,整个互联网行业人才需求也出现了结构性变化。随着相关技术的进步,基础性的岗位逐渐被新技术替代,AI、大数据、5G代表着新技术方向的岗位需求量大增。 

正如京东集团校招负责人表示,在面向2020年毕业的学生群体招聘过程中,发现了一些新现象,更多计算机相关专业的同学投递算法与数据相关的职位,工程类开发投递的占比在逐年下降。BOSS直聘研究院的数据也显示这一特点:2018年,有2%的技能在人才市场上需求呈现负增长,10%的技能需求增速大幅下降。变化最明显的是基础客服、仓储分拣、基础翻译等岗位需求在快速减少。其中,2018年,涉及客服、初级咨询技能的岗位数量较2017年减少30% 。这背后是AI、大数据等技术的进步,机器已经可以取代人工去完成相应的工作,效率更高且成本更低。

这种现象表明,如今重复性高但技术含量低的岗位逐渐被取代,企业越来越需要的是拥有核心竞争力的人才。根据BOSS直聘研究院的数据显示,2018年,所有要求掌握AI、算法、智能识别等相关技能的岗位,年度薪资总和规模至少达到15亿元,较2017年增长5.8倍。同时,互联网公司对这些人才提出了新的要求。比如,对于数据分析师来说,企业更希望他们将精力放在点亮有价值却未能充分利用的“暗数据”和非结构化内容的挖掘上。专业数据分析师除了SAS或R外,更多岗位要求应聘者必须掌握Python、Java,C++等编程语言中的一项。

总之,近几年的互联网发展表明,企业越来越需求复合型技人才,AI、5G等新技术的出现,加剧了这一变革,因此高技术、复合型人才非常抢手且薪资更高。从2019年华为百万年薪抢AI应届博士生、各个科技巨头高薪挖角人工智能人才可见,Al人才依然紧缺,企业高薪抢人将成为常态。随着Al行业的持续发展,相关人才需求量在不断扩大,Al技术人才迎来黄金发展机遇,在高技术服务和制造业领域增长将尤其明显。

美团CEO王兴曾经在风头正盛时突发感慨:2019年是过去10年里最差的一年,却是未来10年里最好的一年。无论2019年企业或个人是否好过,总之它终究过去了。可以肯定的是,未来十年必将是人工智能技术加速普及的爆发期,人工智能产品制造会在各领域中实现,人工智能将不断向日常生活渗透,产业规模将大幅度提升。同时,人工智能具有显著的溢出效应,将带动其他相关技术的持续进步。在这样一个大趋势下,对于那些苦心钻研、勇于创新、脚踏实地、深耕细作的企业,未来十年2020年必将是他们的起点年。
THU数据派
THU数据派

THU数据派"基于清华,放眼世界",以扎实的理工功底闯荡“数据江湖”。发布全球大数据资讯,定期组织线下活动,分享前沿产业动态。了解清华大数据,敬请关注姐妹号“数据派THU”。

产业
1
相关数据
亚马逊机构

亚马逊(英语:Amazon.com Inc.,NASDAQ:AMZN)是一家总部位于美国西雅图的跨国电子商务企业,业务起始于线上书店,不久之后商品走向多元化。目前是全球最大的互联网线上零售商之一,也是美国《财富》杂志2016年评选的全球最大500家公司的排行榜中的第44名。

https://www.amazon.com/
相关技术
微软亚洲研究院机构

微软亚洲研究院于1998年在北京成立,是微软公司在亚太地区设立的基础及应用研究机构,也是微软在美国本土以外规模最大的一个研究院。微软亚洲研究院从事自然用户界面、智能多媒体、大数据与知识挖掘、人工智能、云和边缘计算、计算机科学基础等领域的研究,致力于推动计算机科学前沿发展,着眼下一代革命性技术的创新,助力微软实现长远发展战略。通过与微软产品部门紧密合作,微软亚洲研究院将众多创新技术转移到了微软的核心产品中,如Office、Windows、Azure、Bing、Visual Studio、Xbox Kinect以及小冰、Cortana和Microsoft Translator等人工智能产品。

https://www.msra.cn/
英特尔机构

英特尔(NASDAQ: INTC)是全球半导体行业的引领者,以计算和通信技术奠定全球创新基石,塑造以数据为中心的未来。我们通过精尖制造的专长,帮助保护、驱动和连接数十亿设备以及智能互联世界的基础设施 —— 从云、网络到边缘设备以及它们之间的一切,并帮助解决世界上最艰巨的问题和挑战。

https://www.intel.cn/content/www/cn/zh/homepage.html
相关技术
华为机构

华为创立于1987年,是全球领先的ICT(信息与通信)基础设施和智能终端提供商,致力于把数字世界带入每个人、每个家庭、每个组织,构建万物互联的智能世界。目前华为有19.4万员工,业务遍及170多个国家和地区,服务30多亿人口。

https://www.huawei.com/cn/
微软机构

微软是美国一家跨国计算机科技公司,以研发、制造、授权和提供广泛的计算机软件服务为主。总部位于美国华盛顿州的雷德蒙德,最为著名和畅销的产品为Microsoft Windows操作系统和Microsoft Office办公室软件,以及Xbox的游戏业务。微软是美国《财富》杂志2015年评选的世界500强企业排行榜中的第95名。

https://www.microsoft.com/en-us/about
寒武纪机构

寒武纪科技是全球智能芯片领域的先行者,宗旨是打造各类智能云服务器、智能终端以及智能机器人的核心处理器芯片。公司创始人、首席执行官陈天石教授,在处理器架构和人工智能领域深耕十余年,是国内外学术界享有盛誉的杰出青年科学家,曾获国家自然科学基金委员会“优青”、CCF-Intel青年学者奖、中国计算机学会优秀博士论文奖等荣誉。 团队骨干成员均毕业于国内顶尖高校,具有丰富的芯片设计开发经验和人工智能研究经验,从事相关领域研发的平均时间达七年以上。 寒武纪科技是全球第一个成功流片并拥有成熟产品的智能芯片公司,拥有终端和服务器两条产品线。2016年推出的寒武纪1A处理器(Cambricon-1A)是世界首款商用深度学习专用处理器,面向智能手机、安防监控、可穿戴设备、无人机和智能驾驶等各类终端设备,在运行主流智能算法时性能功耗比全面超越CPU和GPU,与特斯拉增强型自动辅助驾驶、IBM Watson等国内外新兴信息技术的杰出代表同时入选第三届世界互联网大会评选的十五项“世界互联网领先科技成果”。目前公司与智能产业的各大上下游企业建立了良好的合作关系。在人工智能大爆发的前夜,寒武纪科技的光荣使命是引领人类社会从信息时代迈向智能时代,做支撑智能时代的伟大芯片公司。

http://www.cambricon.com
IBM机构

是美国一家跨国科技公司及咨询公司,总部位于纽约州阿蒙克市。IBM主要客户是政府和企业。IBM生产并销售计算机硬件及软件,并且为系统架构和网络托管提供咨询服务。截止2013年,IBM已在全球拥有12个研究实验室和大量的软件开发基地。IBM虽然是一家商业公司,但在材料、化学、物理等科学领域却也有很高的成就,利用这些学术研究为基础,发明很多产品。比较有名的IBM发明的产品包括硬盘、自动柜员机、通用产品代码、SQL、关系数据库管理系统、DRAM及沃森。

https://www.ibm.com/us-en/
相关技术
思必驰机构

思必驰成立于2007年英国剑桥,2008年回国落户江苏苏州,目前员工近800人,在北京、深圳、上海成立了分公司。思必驰是国内领先的对话式AI平台型公司,提供端到端的口语交互系统,拥有全链路的智能语音语言技术,是国内极少数拥有原始创新能力和基础创新团队支撑的AI公司,目前各项知识产权800余项,其中专利514项,保证了思必驰在语音技术在前沿领域的前瞻性发展。思必驰自主研发了新一代的人机交互平台(DUI),和人工智能芯片(TH1520)。

http://www.aispeech.com/
区块链技术

区块链是用分布式数据库识别、传播和记载信息的智能化对等网络, 也称为价值互联网。 中本聪在2008年,于《比特币白皮书》中提出“区块链”概念,并在2009年创立了比特币社会网络,开发出第一个区块,即“创世区块”。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

图像分割技术

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。从数学角度来看,图像分割是将数字图像划分成互不相交的区域的过程。图像分割的过程也是一个标记过程,即把属于同一区域的像索赋予相同的编号。

数据分析技术

数据分析是一类统计方法,其主要特点是多维性和描述性。有些几何方法有助于揭示不同的数据之间存在的关系,并绘制出统计信息图,以更简洁的解释这些数据中包含的主要信息。其他一些用于收集数据,以便弄清哪些是同质的,从而更好地了解数据。 数据分析可以处理大量数据,并确定这些数据最有用的部分。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

人脸识别技术

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

边缘计算技术

边缘运算(英语:Edge computing),又译为边缘计算,是一种分散式运算的架构,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。边缘运算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。在这种架构下,资料的分析与知识的产生,更接近于数据资料的来源,因此更适合处理大数据。

知识库技术

知识库是用于知识管理的一种特殊的数据库,以便于有关领域知识的采集、整理以及提取。知识库中的知识源于领域专家,它是求解问题所需领域知识的集合,包括基本事实、规则和其它有关信息。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

知识图谱技术

知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。 知识图谱这个概念最早由Google提出,主要是用来优化现有的搜索引擎。不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

数据挖掘技术

数据挖掘(英语:data mining)是一个跨学科的计算机科学分支 它是用人工智能、机器学习、统计学和数据库的交叉方法在相對較大型的数据集中发现模式的计算过程。 数据挖掘过程的总体目标是从一个数据集中提取信息,并将其转换成可理解的结构,以进一步使用。

云计算技术

云计算(英语:cloud computing),是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需求提供给计算机各种终端和其他设备。

支持向量机技术

在机器学习中,支持向量机是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别。

无人机技术

无人机(Uncrewed vehicle、Unmanned vehicle、Drone)或称无人载具是一种无搭载人员的载具。通常使用遥控、导引或自动驾驶来控制。可在科学研究、军事、休闲娱乐用途上使用。

概念图技术

概念图(CGs)是知识表示的形式主义。 在第一篇关于CG的论文中,John F. Sowa用它们来表示数据库系统中使用的概念模式。 关于CGs的第一本书(Sowa 1984)将它们应用于人工智能、计算机科学和认知科学等广泛的主题。

序列到序列技术

生成对抗网络技术

生成对抗网络是一种无监督学习方法,是一种通过用对抗网络来训练生成模型的架构。它由两个网络组成:用来拟合数据分布的生成网络G,和用来判断输入是否“真实”的判别网络D。在训练过程中,生成网络-G通过接受一个随机的噪声来尽量模仿训练集中的真实图片去“欺骗”D,而D则尽可能的分辨真实数据和生成网络的输出,从而形成两个网络的博弈过程。理想的情况下,博弈的结果会得到一个可以“以假乱真”的生成模型。

图像分类技术

图像分类,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。

自然语言生成技术

自然语言生成(NLG)是自然语言处理的一部分,从知识库或逻辑形式等等机器表述系统去生成自然语言。这种形式表述当作心理表述的模型时,心理语言学家会选用语言产出这个术语。自然语言生成系统可以说是一种将资料转换成自然语言表述的翻译器。不过产生最终语言的方法不同于编译程式,因为自然语言多样的表达。NLG出现已久,但是商业NLG技术直到最近才变得普及。自然语言生成可以视为自然语言理解的反向: 自然语言理解系统须要厘清输入句的意涵,从而产生机器表述语言;自然语言生成系统须要决定如何把概念转化成语言。

阿里巴巴机构

阿里巴巴网络技术有限公司(简称:阿里巴巴集团)是以曾担任英语教师的马云为首的18人于1999年在浙江杭州创立的公司。 阿里巴巴集团经营多项业务,另外也从关联公司的业务和服务中取得经营商业生态系统上的支援。业务和关联公司的业务包括:淘宝网、天猫、聚划算、全球速卖通、阿里巴巴国际交易市场、1688、阿里妈妈、阿里云、蚂蚁金服、菜鸟网络等。 2014年9月19日,阿里巴巴集团在纽约证券交易所正式挂牌上市,股票代码“BABA”,创始人和董事局主席为马云。 2018年7月19日,全球同步《财富》世界500强排行榜发布,阿里巴巴集团排名300位。2018年12月,阿里巴巴入围2018世界品牌500强。

https://www.alibabagroup.com/
相关技术
百度机构

百度是全球最大的中文搜索引擎,是一家互联网综合信息服务公司,更是全球领先的人工智能平台型公司。2000年1月1日创立于中关村,公司创始人李彦宏拥有“超链分析”技术专利,也使中国成为美国、俄罗斯、和韩国之外,全球仅有的4个拥有搜索引擎核心技术的国家之一。

https://www.baidu.com/
京东机构

京东(股票代码:JD),中国自营式电商企业,创始人刘强东担任京东集团董事局主席兼首席执行官。旗下设有京东商城、京东金融、拍拍网、京东智能、O2O及海外事业部等。2013年正式获得虚拟运营商牌照。2014年5月在美国纳斯达克证券交易所正式挂牌上市。 2016年6月与沃尔玛达成深度战略合作,1号店并入京东。

目标检测技术

一般目标检测(generic object detection)的目标是根据大量预定义的类别在自然图像中确定目标实例的位置,这是计算机视觉领域最基本和最有挑战性的问题之一。近些年兴起的深度学习技术是一种可从数据中直接学习特征表示的强大方法,并已经为一般目标检测领域带来了显著的突破性进展。

5G技术

第五代移动通信系统(5th generation mobile networks),简称5G,是4G系统后的延伸。美国时间2018年6月13日,圣地牙哥3GPP会议订下第一个国际5G标准。由于物理波段的限制,5G 的网络也将会与其他通信技术并用,包含长距离的其他传统电信波段。

量子计算技术

量子计算结合了过去半个世纪以来两个最大的技术变革:信息技术和量子力学。如果我们使用量子力学的规则替换二进制逻辑来计算,某些难以攻克的计算任务将得到解决。追求通用量子计算机的一个重要目标是确定当前经典计算机无法承载的最小复杂度的计算任务。该交叉点被称为「量子霸权」边界,是在通向更强大和有用的计算技术的关键一步。

端AI芯片技术

AI芯片部署的位置有两种:云端、终端。所以根据部署的位置不同,AI芯片可以分为:云AI芯片、端AI芯片。终端,即手机、安防摄像头、汽车、智能家居设备、各种IoT设备等执行边缘计算的智能设备。终端的数量庞大,而且需求差异较大。

生成对抗技术

生成对抗是训练生成对抗网络时,两个神经网络相互博弈的过程。两个网络相互对抗、不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真实。

暂无评论
暂无评论~