Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

哈希革新Transformer:这篇ICLR高分论文让一块GPU处理64K长度序列

Transformer 是近期 NLP 领域里最热门的模型之一,但因为算力消耗过大,对于个人研究者来说一直不太友好。近日一篇入选 ICLR 2020 的研究提出了「Reformer」,把跑 Transformer 模型的硬件要求压缩到了只需一块 GPU,同时效果不变。

大型的 Transformer 往往可以在许多任务上实现 sota,但训练这些模型的成本很高,尤其是在序列较长的时候。在 ICLR 的入选论文中,我们发现了一篇由谷歌和伯克利研究者发表的优质论文。文章介绍了两种提高 Transformer 效率的技术,最终的 Reformer 模型和 Transformer 模型在性能上表现相似,并且在长序列中拥有更高的存储效率和更快的速度。论文最终获得了「8,8,6」的高分。

在最开始,文章提出了将点乘注意力(dot-product attention)替换为一个使用局部敏感哈希(locality-sensitive hashing)的点乘注意力,将复杂度从 O(L2 ) 变为 O(L log L),此处 L 指序列的长度。


此外,研究者使用可逆残差(reversible residual layers)代替标准残差(standard residuals),这使得存储在训练过程中仅激活一次,而不是 n 次(此处 n 指层数)。最终的 Reformer 模型和 Transformer 模型在性能上表现相同,同时在长序列中拥有更高的存储效率和更快的速度。


这篇论文在评审过程中收获了「一致通过」,并被认为将产生重大影响,也经过了几位外部评审的详细审查,最终获得了「8,8,6」的高分。

  • 论文地址:https://openreview.net/forum?id=rkgNKkHtvB
  • 代码:https://github.com/google/trax/blob/master/trax/models/research/reformer.py


引言


Transformer 架构被广泛用于自然语言处理中,并且在许多任务中实现了 sota。为了获得这些结果,研究者不得不开始训练更大的 Transformer 模型。在最大的配置中,参数数量已经超过了 0.5B/层,层数多达 64。


诸如此类的大型 Transformer 模型频频出现,到底是客观上必须要求如此多的资源,还是仅仅是因为处理效率不够高?


可以参考下面这些数据:


0.5B 的参数占据了 2GB 的内存,嵌入大小为 1024、批处理大小为 8 的 64K token 的激活要用 64K×1K×8 = 0.5B 浮点数,需要另外 2GB 的内存。


如果说每层的内存占用只有这么一些的话,部署 Transformer 会比实际中更容易,但是事情并不是这样的。以上的估计只包括了每层的内存占用情况和输入的激活损失,并没有考虑 Transformer 上的内存占用问题:


  • 由于激活需要被存储并用于反向传播,有着 N 层的模型的大小比单层大了 N 倍;

  • 由于中间的全连接层的深度 d_ff 通常远大于注意力激活层的深度 d_model,因此需要占用很大的内存;

  • 在长度为 L 的序列上的 attention 的计算和时间复杂度是 O(L2),所以即使是一个有 64K 字符的序列就会耗尽 GPU 的内存。


研究者提出了一种 Reformer 模型来解决刚才说的那些问题:


  • 可逆层(Reversible layer),这个东西最早是 Gomez 等人引入的,在整个模型中启用单个副本,所以 N factor 就消失了;

  • 在前馈层(feed-forward layer)分开激活和分块处理,消除 d_ff factor,节省前馈层的内存;

  • 基于局部敏感哈希(locality-sensitive hashing,LSH)的近似注意力计算,让注意力层的 O(L2) 因子替代 O(L) 因子,实现在长序列上的操作。


局部敏感哈希注意力(LSH Attention)


Transformer 中的多头注意力层是造成内存占用大的主要原因,因此研究者从这里入手解决问题。


首先回顾一下点乘注意力机制,如下所示:

在多头注意力中,多个注意力层平行计算并叠加。每个注意力层会线性地投影 queries、keys 和 values h 次。


在计算中可以发现,这种注意力机制带来的内存占用是很大的。回到公式 1,假设 Q、K、V 都有 [batch size, length, d_model] 这样的 shape。主要的问题就在于 QK^T,因为它的 shape 是 [batch size, length, length]。如果实验中序列的长度是 64k,在批大小为 1 的情况下,这就是一个 64K × 64K 的矩阵了,如果是 32 位浮点计算就需要 16GB 的内存。因此,序列越长,Transformer 性能就越受到影响。


如果要减少内存占用的话,在这里就需要让 Q 和 K 保持一致。这是很容易的,只要从同样的线性层 A 提取即可,并单独分离一个给 V。QK 共享不会对 Transformer 的性能造成影响,即使对 K 加入额外的正则长度。


对于局部敏感哈希注意力而言,需要 Q=K,以及 V,它们的 shape 都是 [batch size,length,d_model],而重点关注的是 QK^T,有着 [batch size,length,length] 的 shape。进一步来说,对于每个 q_i,实际需要关注的是它们在 key 的接近值。例如,如果 K 是 64K,对于每个 q_i,只需要考虑一小部分,如 32 个到 64 个最接近的 keys。


这样一来就需要找到最近邻的值,这就需要局部敏感哈希(LSH)了,它能够快速在高维空间中找到最近邻。一个局部敏感哈希算法可以将每个向量 x 转换为 hash h(x),和这个 x 靠近的哈希更有可能有着相同的哈希值,而距离远的则不会。在这里,研究者希望最近的向量最可能得到相同的哈希值,或者 hash-bucket 大小相似的更有可能相同。

图 1:研究中使用的局部敏感哈希算法。这种算法使用随机旋转的方法,对投影的点建立分块,建立的规则依据对给定轴的投影进行比较。在本图中,两个点 x、y 由于三次随机旋转投影中的两次都不靠近,所以不太可能有相同的哈希值。而另一个例子中他们投影后都在同一个。


最终,对 attention 进行哈希处理的流程如下:

图 2:简化的局部敏感哈希注意力,展示了 hash-bucketing、排序和分块步骤,并最终实现注意力机制


不同注意力类型的复杂度对比结果见下表 1:

表 1:Scaled Dot-Product、Memory-Efficient 与 LSH 注意力的内存和复杂度对比。l 表示长度,b 表示批量大小,n_h 表示 head 数量,n_c 表示 LSH 块数量,n_r 表示哈希重复次数。


怎么使用这种新型 attention


在一个大型 Transformer 中,通常设置 d_ff = 4K、n_l = 16,所以,如果 n_l = 16,那内存占用就会达到 16GB。在论文中,研究者首先通过可逆层来解决 n_l 问题,然后展示了如何利用分块来解决 d_ff 问题。


可逆 Transformer


研究者在 Transformer 上应用了 RevNet 思想,将注意力和前馈层结合在 RevNet 块内。


常规的残差层执行一个作用于单个输入并产生单个输出的

函数,其形式为 y = x + F (x),可逆层作用于成对的输入/输出:

,并遵循以下方程:

在上面的公式中,F 成为注意力层,而 G 成为前馈层。

可逆 Transformer b 不需要在每一层中激活存储,于是无需使用 nl 项。


分块


比较厚的层仍然会占用大量内存。前馈层的计算在序列中是完全独立的,所以可以分块:

一般这一层会通过执行所有位置的操作来进行批处理,但是每次进行一块的处理方法会减少内存占用,反向计算(reverse computation)和反向过程(backward pass)也会被分块。


实验


在实验部分,研究者逐个分析上述每种技术,以确定哪种组合会对性能产生影响。首先,他们证明了可逆的层和共享的查询-键空间对性能没有影响。接下来,他们开始分析哈希注意力以及整个 Reformer 模型。


研究者在 imagenet64 和 enwik8-64K 任务上进行了实验,其中,后者是 enwik8 的一个变体,被分为 2 个 16 = 64K token 的子序列。研究者使用 3 层的模型进行控制变量实验,以便与常规 transformer 进行比较。所有的实验都有 d_model = 1024、d_ff = 4096、n_heads = 8。这些模型在每块 GPU 上进行批大小为一个序列的训练,总共有 8 块 GPU 并行。


研究者首先考虑了共享 QK 注意力对于常规 Transformer 模型的影响。共享 QK 注意力使得

,并且防止 token 注意到自身(除非没有其他可用的语境)。在下图 3 的左半部分,研究者绘制了常规和共享 QK 注意力的困惑度曲线。


共享的查询-键空间并不比常规注意力表现差;实际上,对于 enwik8 来说,前者甚至训练得稍快一些。换句话说,采用共享 QK 注意力并不会造成准确率的损失。

图 3:在 enwik8 和 imagenet64 训练中,共享查询-键空间(左)和可逆性(右)对于性能的影响。


可逆层又会产生什么影响呢?如上图 3 右所示,研究者对比了常规 Transformer 和文中提到的可逆 Transformer。它们拥有相同的参数量,学习曲线也几乎一样。结果表明,可逆 Transformer 节省内存的同时也不以牺牲准确率为代价。


如下图 4 所证,LSH 注意力是全注意力的近似值,它的准确率随着哈希值的增加而提升。当哈希值为 8 时,LSH 注意力几乎等同于全注意力。一般而言,模型的计算开销随哈希值的增加而增大,所以研究者可以根据自身计算预算调整哈希值。

图 4:在 imagenet64 上 LSH 注意力性能基于哈希值的变化曲线图。


如下表 2 所示,研究者可以在评估的时候增加哈希值,从而使得结果更加准确。

如下图 5 右所示,研究者描述出不同注意力类型的速度和序列长度的变化曲线图,同时保持 token 总数量不变。结果显示,常规注意力随着序列长度的增加而速度减缓,而 LSH 注意力速度保持平稳。

图 5 左:在 enwik8 上 LSH 注意力随层数增加的性能变化曲线;图 5 右:全注意力和 LSH 注意力的评估速度呈现出不同的曲线变化。


此外,为了验证 Reformer 的确可以在单核心上拟合大模型,并能够在长序列上快速训练,研究者在 enwik8 和 imagenet64 上训练了多达 20 层的大型 Reformer。如上图 5 所示,这些模型拟合内存和训练。
理论Transformer谷歌加州大学伯克利分校
相关数据
时间复杂度技术

在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。例如,如果一个算法对于任何大小为 n (必须比 n0 大)的输入,它至多需要 5n3 + 3n 的时间运行完毕,那么它的渐近时间复杂度是 O(n3)。

学习曲线技术

在机器学习领域,学习曲线通常是表现学习准确率随着训练次数/时长/数据量的增长而变化的曲线

注意力机制技术

我们可以粗略地把神经注意机制类比成一个可以专注于输入内容的某一子集(或特征)的神经网络. 注意力机制最早是由 DeepMind 为图像分类提出的,这让「神经网络在执行预测任务时可以更多关注输入中的相关部分,更少关注不相关的部分」。当解码器生成一个用于构成目标句子的词时,源句子中仅有少部分是相关的;因此,可以应用一个基于内容的注意力机制来根据源句子动态地生成一个(加权的)语境向量(context vector), 然后网络会根据这个语境向量而不是某个固定长度的向量来预测词。

推荐文章
暂无评论
暂无评论~