StartDT AI Lab | 数据增强技术如何实现场景落地与业务增值?

数据增强是增大数据规模,减轻模型过拟合的有效方法,数据增强技术作为视觉智能引擎的助燃剂,不断为之提供动力,并为StartDT AI Lab的算法落地提供强有力的支持。

  • 有人说,「深度学习“等于”深度卷积神经网络算法模型+大规模数据+云端分布式算力」。也有人说,「能够在业内叱咤风云的AI都曾“身经百战”,经历过无数次的训练与试错」。以上都需要海量数据做依托,对于那些数据量匮乏的领域,就衍生出了数据增强技术。即,根据一个原始数据,稍作改动,变成一个对于AI来说的全新的数据。

为什么做数据增强?

数据规模的重要性到底怎样呢?可以说,深度学习的火热和蓬勃发展,直接源于普林斯顿大学教授李飞飞及她所带领的团队创作的一个包含百万级图片的数据集ImageNet。工业级人脸识别模型的训练,也是动辄百万级、千万级的人脸图片数量。深度学习是基于大数据的一种方法,我们当然希望数据的规模越大、质量越高越好,模型才能够有着更好的泛化能力。但大家都知道,海量数据的标注是一件非常庞大、非常耗时耗力耗金的工作,能标注的数据往往十分有限,同时,我们希望数据能覆盖各种场景,然而实际采集数据的时候,往往很难覆盖掉全部的场景。这时数据增强是扩充数据样本规模的一种有效的方法。

如何进行数据增强?

数据增强可以分为常规的数据增强和特殊的数据增强。常规的数据增强方法又可分为:空间几何变换类(水平垂直翻转、随机裁剪、旋转、仿射变换、透视变换)、色彩类(随机亮度、饱和度、色调)、噪声类(椒盐噪声、高斯噪声、频域噪声)、随机擦除、锐化、模糊等;然而,特殊的数据增强有着各种各样的形式,为应对不同的视觉任务以及应用场景,所采用的增强方式也会随之不同。对于某个深度学习任务,并非所有的数据增强方法都有作用,接下来将详细介绍StartDT AI Lab是如何采用数据增强技术实现场景落地与业务增值的。

商品检测、分类任务中的数据增强技术

“无人货柜”、“无人店”等应用场景下,智能算法引擎的任务就是检测并识别商品。为了提高我们视觉模型的精度与泛化能力,除了采用一些常规的数据增强外,我们还使用了多样本融合的数据增强,例如Mix-up、Sample-Pairing等。Mix-up是一种将多张图片按一定权值融合在一起的数据增强方法;此外,一些基于强化学习的数据增强方式也给我们带来了相当可观的算法收益,例如谷歌的Auto-Augment。Auto-Augment的做法是通过强化学习的方法,以不同的数据增强方法为搜索空间,搜索对于当前深度学习任务有效的数据增强方法的组合;另外,还有一些增强正样本或负样本以控制正负样本均衡的数据增强方法。

人脸识别中的数据增强技术

人脸数据的不同个体之间相似程度较高,并且涉及个人隐私问题,这些问题给人脸数据的收集、清洗以及标注工作带来了巨大的困难与挑战。此外,人脸识别在我们的实际应用场景属于开放性场景,摄像头的安装位置、光照、遮挡等等因素造成了人脸数据分布的不确定性与复杂性。公开数据集虽然在数量级上较为可观,但是其仍然存在一定问题。不同faceid下的图片个数、人脸的姿态、光照条件、图像质量等存在巨大差异,造成了样本不均衡。如果直接采用这些数据进行算法模型训练,很难满足实际应用的需求。为此,我们采用了数据增强技术很大程度上解决了以上问题。

  • 人脸姿态变换:采用传统图像处理算法与GAN生成对抗网络结合的方式,实现通过单幅人脸图像模拟任意姿态的人脸图像。

人脸姿态变化

  • 人脸属性修改:利用GAN生成对抗网络,实现人脸属性的修改,包括表情、配饰、发型等。

人脸属性修改(眼镜佩戴与否)

通过结合传统方法和深度学习方法,对人脸图像进行去(加)噪、去(模拟)模糊、超分辨(降质)等处理,从而获取不同质量的人脸数据。

行人重识别(REID)中的数据增强技术

在“奇点识客”系统中,REID技术作为人脸识别技术的一个重要补充,用于行人跨域追踪。然而,现场摄像头画面之间、现场摄像头画面行人数据分布与公开数据集之间都存在巨大domain差异,因此采用公开数据集训练的Re-ID模型在该场景下的准确率较低,无法满足实际需求。针对此问题,我们采用生成对抗网络(GAN)将公开数据集中的行人转化成实际场景下的图像风格,重新进行训练后,模型准确率提升了50%以上。此外,我们还通过GAN的方式实现行人姿态的变化,以提高数据集的多样性;通过注意力机制强化学习行人除衣着之外的特征(头部,四肢等),以解决行人换衣导致的准确率下降的问题。

行人风格转换

数据增强是增大数据规模,减轻模型过拟合的有效方法,数据增强技术作为视觉智能引擎的助燃剂,不断为之提供动力,并为StartDT AI Lab的算法落地提供强有力的支持。

奇点云 | StartDT
奇点云 | StartDT

数据智能是未来商业的源动力,奇点云打造的AI驱动的数据中台,基于大数据计算平台、自主研发的视觉计算技术和覆盖多场景的智能终端。帮助企业实现数据采集自动化、数据处理智能化、数据资产私有化、数据应用敏捷化,加快企业创新步伐,实现数据生命周期管理,将数据智能应用到企业经营的各个环节,降低成本,提高效率,协同企业跨越数据智能大规模应用的奇点,让商业更智能。

产业行人重识别数据增强
3
相关数据
李飞飞人物

李飞飞,斯坦福大学计算机科学系教授,斯坦福视觉实验室负责人,斯坦福大学人工智能实验室(SAIL)前负责人。专业领域是计算机视觉和认知神经科学。2016年11月李飞飞加入谷歌,担任谷歌云AI/ML首席科学家。2018年9月,返回斯坦福任教,现为谷歌云AI/ML顾问。10月20日斯坦福大学「以人为中心的AI计划」开启,李飞飞担任联合负责人。11月20日李飞飞不再担任SAIL负责人,Christopher Manning接任该职位。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

人脸识别技术

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

注意力机制技术

我们可以粗略地把神经注意机制类比成一个可以专注于输入内容的某一子集(或特征)的神经网络. 注意力机制最早是由 DeepMind 为图像分类提出的,这让「神经网络在执行预测任务时可以更多关注输入中的相关部分,更少关注不相关的部分」。当解码器生成一个用于构成目标句子的词时,源句子中仅有少部分是相关的;因此,可以应用一个基于内容的注意力机制来根据源句子动态地生成一个(加权的)语境向量(context vector), 然后网络会根据这个语境向量而不是某个固定长度的向量来预测词。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

过拟合技术

过拟合是指为了得到一致假设而使假设变得过度严格。避免过拟合是分类器设计中的一个核心任务。通常采用增大数据量和测试样本集的方法对分类器性能进行评价。

图像处理技术

图像处理是指对图像进行分析、加工和处理,使其满足视觉、心理或其他要求的技术。 图像处理是信号处理在图像领域上的一个应用。 目前大多数的图像均是以数字形式存储,因而图像处理很多情况下指数字图像处理。

生成对抗网络技术

生成对抗网络是一种无监督学习方法,是一种通过用对抗网络来训练生成模型的架构。它由两个网络组成:用来拟合数据分布的生成网络G,和用来判断输入是否“真实”的判别网络D。在训练过程中,生成网络-G通过接受一个随机的噪声来尽量模仿训练集中的真实图片去“欺骗”D,而D则尽可能的分辨真实数据和生成网络的输出,从而形成两个网络的博弈过程。理想的情况下,博弈的结果会得到一个可以“以假乱真”的生成模型。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

仿射变换技术

仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。 一个对向量平移,与旋转放大缩小的仿射映射为 上式在齐次坐标上,等价于下面的式子 在分形的研究里,收缩平移仿射映射可以制造制具有自相似性的分形

生成对抗技术

生成对抗是训练生成对抗网络时,两个神经网络相互博弈的过程。两个网络相互对抗、不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真实。

推荐文章
暂无评论
暂无评论~