云从科技与中科院联合夺得ICCV 2019无人机目标检测冠军

10月27日-11月2日,在ICCV 2019 Workshop举办的 Vision Meets Drone: A Challenge(简称:VisDrone 2019)挑战赛上,云从科技研究院与中科院信息工程研究所葛仕明研究员团队(以下简称“联合研究团队”)获得了Task3“单目标跟踪挑战(Single Object Tracking, SOT)”冠军,再次刷新此项目的世界纪录。

这是继今年三月份跨镜追踪(ReID)、3D人体重建技术、自然语言处理技术分别创造世界纪录后,云从科技人工智能领域再一次领跑全球。同时,这也是云从科技第十四次获得世界冠军。

微信图片_20191108201211

VisDrone2019 挑战赛

ICCV 2019国际计算机视觉大会由 IEEE 主办,与计算机视觉模式识别会议(CVPR)和欧洲计算机视觉会议(ECCV)并称计算机视觉方向的三大顶级会议,属于CCF A 类会议。

此次VisDrone 2019(无人机目标检测)挑战赛,要从无人机获取的视觉数据中进行物体检测和跟踪,吸引了来自海内外知名高校、科研机构和企业,包括中科院、清华大学、马里兰大学、伊利诺伊大学厄巴纳-香槟分校、云从科技三星研究院等近百支队伍参赛。

本届挑战赛包含了四个任务,联合研究团队参加了“任务3:单目标跟踪挑战”,最后在众多参赛队中脱颖而出获得冠军。

687474703a2f2f6169736b796579652e636f6d2f757066696c652f31353234303430333938313130696d6167655f73616d706c652e6a7067

VisDrone 2019数据集由天津大学机器学习数据挖掘实验室的AISKYEYE团队收集,全部基准数据集由无人机捕获,包括288个视频片段,总共包括261908帧和10209个静态图像。

这些帧由260多万个常用目标(如行人、汽车、自行车和三轮车)的手动标注框组成。为了让参赛队伍能够更有效地利用数据,数据集还提供了场景可见性、对象类别和遮挡等重要属性。

因此,本届赛题难点诸多。联合研究团队在“任务3:单目标跟踪挑战”中,不仅要处理训练集、验证集、测试集等大量数据,还要克服数据中的低分辨率、长期遮挡、相机运动模糊等困难。

Task3 single-object tracking任务3:单目标跟踪挑战

创造世界新纪录

经过反复训练与测试,联合研究团队最终提出了改进的精确目标状态估计算法:ED-ATOM。方法里面包含两个模块:目标估计和物体分类。

其中,目标估计模块使用IOU预测网络、ResNet-18网络和ImageNet等数据集来做预训练,同时使用低光照图像增强算法处理原始数据,离线精调模型后再在线基于跟踪状态的搜索策略改进鲁棒性。

物体分类模块则使用数据增强的方法,进行在线数据扩充,以便于分类模型的可推广性。同时基于跟踪状态的有效搜索策略,改进稳健性。

最终,结合IE(图像增强)、ED(通过增强数据训练的IOU预测网络)、DA(在线数据增强)、LT(长期跟踪)几种方法的ED-ATOM算法,取得了最优成绩,刷新了世界纪录。

运用微光图像增强方法实行暗部追踪训练,通过不同方法的测试,确定效果最佳方案;

运用数据扩充方案,在目标外观发生变化的情况下,通过翻转、平移、缩放、仿射、旋转、模糊等增强方法,提高跟踪自适应性;

在面对严重的不在视野和完全遮挡的跟踪情况下,使用长期跟踪方案,可以自适应搜索区域,提高跟踪稳健性。

通过ED-ATOM算法,我们可以实现在低分辨率、长期遮挡、摄像机运动/运动模糊等情况下的有效可视化,从而达到锁定目标、预判行动等效果。

高质量跟踪分数

该成果的取得是联合研究团队共同的努力,始终坚持人工智能在实际场景运用中的技术研究与创新。云从科技孵化自中科院重庆研究院,与中科院可谓一脉相承。

作为人工智能领域的智能服务领军企业,云从科技吸引并拥有全球最优秀的人才。在广州、重庆、上海、苏州、成都等地都成立了研发中心,研发人员超过1000名,提供了核心技术产品研发能力。同时与各大学、研究院等成立联合实验室,掌握最前沿的核心技术研发能力。雄厚的人才与技术储备,为云从科技再次创造世界纪录提供强大动力。

5-1

追求技术创新的同时,云从科技始终坚持技术场景化的落地应用。ED-ATOM算法的提出,对今后安防侦测、行人跟踪、安全检测等方面的产品研发,将发挥更有价值的作用。

例如在智能安防方面,云从科技研发的智能安防管理系统是一套以人为核心的基于物联网、人工智能大数据技术的智能化应用系统。新算法的融合,让可能的移动端(无人机或者自主系统)上得到应用的机会大大提升。

随着无人机作为视觉数据采集设备已快速而广泛的部署到城市、农业、航空等应用领域,对无人机平台收集的视觉数据进行分析和理解的需求变得愈发迫切。云从科技参与单目标跟踪挑战赛的成果,不仅对计算机视觉甚至人工智能技术是进一步的推动,也对视频监控、人机交互、自动驾驶、虚拟现实等场景都具有重要意义。

今后,云从科技将继续以人工智能技术与人机协同平台为基础,通过行业领先的人工智能、认知计算与大数据技术形成的整合解决方案,促进泛在智能下的未来城市建设。

产业目标检测无人机ICCV 2019中科院云从科技
1
相关数据
云从科技机构

云从科技是从中国科学院孵化的人工智能企业,专注于人脸识别等计算机视觉技术研发。核心技术源于四院院士、计算机视觉之父——Thomas S. Huang 黄煦涛教授。研发团队曾于2007年到2016年7次斩获智能识别类世界大赛冠军。云从科技作为中国科学院战略性先导科技专项的唯一人脸识别团队,参与了人脸识别国标、部标、行标起草与制定; 2017年2月,云从科技入选国家发改委重大工程,与百度、腾讯、科大讯飞共同负责人工智能公共平台建设。

http://www.cloudwalk.cn/
机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

虚拟现实技术

虚拟现实,简称虚拟技术,也称虚拟环境,是利用电脑模拟产生一个三维空间的虚拟世界,提供用户关于视觉等感官的模拟,让用户感觉仿佛身历其境,可以及时、没有限制地观察三维空间内的事物。用户进行位置移动时,电脑可以立即进行复杂的运算,将精确的三维世界视频传回产生临场感。

模式识别技术

模式识别(英语:Pattern recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。 我们把环境与客体统称为“模式”。 随着计算机技术的发展,人类有可能研究复杂的信息处理过程。 信息处理过程的一个重要形式是生命体对环境及客体的识别。其概念与数据挖掘、机器学习类似。

验证集技术

验证数据集是用于调整分类器超参数(即模型结构)的一组数据集,它有时也被称为开发集(dev set)。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

数据挖掘技术

数据挖掘(英语:data mining)是一个跨学科的计算机科学分支 它是用人工智能、机器学习、统计学和数据库的交叉方法在相對較大型的数据集中发现模式的计算过程。 数据挖掘过程的总体目标是从一个数据集中提取信息,并将其转换成可理解的结构,以进一步使用。

大数据技术技术

大数据,又称为巨量资料,指的是传统数据处理应用软件不足以处理它们的大或复杂的数据集的术语。

无人机技术

无人机(Uncrewed vehicle、Unmanned vehicle、Drone)或称无人载具是一种无搭载人员的载具。通常使用遥控、导引或自动驾驶来控制。可在科学研究、军事、休闲娱乐用途上使用。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

图像增强技术

图像增强技术用于增强图像中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合。它通过有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。

人机交互技术

人机交互,是一门研究系统与用户之间的交互关系的学问。系统可以是各种各样的机器,也可以是计算机化的系统和软件。人机交互界面通常是指用户可见的部分。用户通过人机交互界面与系统交流,并进行操作。小如收音机的播放按键,大至飞机上的仪表板、或是发电厂的控制室。

三星机构

三星集团是韩国最大的跨国企业集团,同时也是上市企业全球500强,三星集团包括众多的国际下属企业,旗下子公司有:三星电子、三星物产、三星航空、三星人寿保险、雷诺三星汽车等,业务涉及电子、金融、机械、化学等众多领域。 三星集团成立于1938年,由李秉喆创办。三星集团是家族企业,李氏家族世袭,旗下各个三星产业均为家族产业,并由家族中的其他成员管理,集团领导人已传至 李氏第三代,李健熙为现任集团会长,其子李在镕任三星电子副会长。

目标检测技术

一般目标检测(generic object detection)的目标是根据大量预定义的类别在自然图像中确定目标实例的位置,这是计算机视觉领域最基本和最有挑战性的问题之一。近些年兴起的深度学习技术是一种可从数据中直接学习特征表示的强大方法,并已经为一般目标检测领域带来了显著的突破性进展。

推荐文章
暂无评论
暂无评论~