Luo Sainan作者H4O编辑

八千字长文深度解读,迁移学习在强化学习中的应用及最新进展

迁移学习通过将源任务学习到的经验应用到目标任务,从而让目标任务的训练更灵活高效,也更贴近现实情况——往往要解决的目标问题可能很难直接学习,因为训练数据不足或者无法直接与环境交互难以获得训练数据。因此将迁移学习应用到强化学习中,势必能帮助强化学习更好地落地到实际问题。本文将从迁移学习强化学习中的迁移学习强化学习中的迁移技术最新进展三个部分向大家分享。

Part 1 迁移学习

一、迁移学习是什么?

机器学习技术在许多领域取得了重大成功,但是,许多机器学习方法只有在训练数据和测试数据在相同的特征空间中或具有相同分布的假设下才能很好地发挥作用。当分布发生变化时,大多数统计模型需要使用新收集的训练数据重建模型。在许多实际应用中,重新收集所需的训练数据并重建模型的代价是非常昂贵的,在这种情况下,我们需要在任务域之间进行知识迁移 (Knowledge Transfer) 或迁移学习 (Transfer Learning),避免高代价的数据标注工作。

比如说,我们在一个感兴趣的领域中有一个分类任务,但我们只在另一个感兴趣的领域中有足够的训练数据,其中后者的数据可能在不同的特征空间中或遵循不同的数据分布,我们希望能够从后者中将知识进行迁移从而帮助完成前者的任务。现实生活中就有许多迁移学习的例子,比如说,掌握 C++语言有助于快速上手 Java、Python 等。人们可以聪明地应用以前学到的知识来更快更有效地解决新的问题,这就是一种迁移学习

迁移学习的定义[1] 如下:给定一个源域 Ds 和学习任务 Ts,一个目标域 Dt 和学习任务 Tt,迁移学习致力于通过使用源域 Ds 和源任务 Ts 中的知识,帮助提升目标域 Dt 中的目标预测函数 f_T() 的学习,其中 Ds≠Dt,或者 Ts≠Tt。

二、迁移学习的三个主要研究问题

迁移学习中主要研究以下三个问题:

  • 迁移什么

  • 如何迁移

  • 何时迁移

「迁移什么」指的是跨域或跨任务迁移哪一部分知识。一些知识可能是特定于单个域或任务的,而一些知识可能在不同域之间是相同的,通过迁移知识的选择可以帮助提高目标域或任务的性能。目前,迁移学习的内容主要可分为四类:实例迁移特征表示迁移参数迁移、关系知识迁移。

在发现可以迁移的知识之后,需要开发学习算法来迁移知识,这就是「如何迁移」的问题。

「何时迁移」指的是在什么情况下可以进行迁移,在哪些情况下不应该迁移。在某些情况下,当源域和目标域彼此不相关时,强行进行迁移可能会失败。而在最坏的情况下,它甚至可能损害目标域的学习表现,这种情况通常被称为负迁移。当前有关「迁移什么」和「如何迁移」的大多数迁移学习工作都暗含源域和目标域彼此相关这一假设。但是,如何避免负迁移仍旧是迁移学习领域受关注的问题。

专业用户独享

本文为机器之心深度精选内容,专业认证后即可阅读全文
开启专业认证
理论强化学习迁移学习
10
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

深度强化学习技术

强化学习(Reinforcement Learning)是主体(agent)通过与周围环境的交互来进行学习。强化学习主体(RL agent)每采取一次动作(action)就会得到一个相应的数值奖励(numerical reward),这个奖励表示此次动作的好坏。通过与环境的交互,综合考虑过去的经验(exploitation)和未知的探索(exploration),强化学习主体通过试错的方式(trial and error)学会如何采取下一步的动作,而无需人类显性地告诉它该采取哪个动作。强化学习主体的目标是学习通过执行一系列的动作来最大化累积的奖励(accumulated reward)。 一般来说,真实世界中的强化学习问题包括巨大的状态空间(state spaces)和动作空间(action spaces),传统的强化学习方法会受限于维数灾难(curse of dimensionality)。借助于深度学习中的神经网络,强化学习主体可以直接从原始输入数据(如游戏图像)中提取和学习特征知识,然后根据提取出的特征信息再利用传统的强化学习算法(如TD Learning,SARSA,Q-Learnin)学习控制策略(如游戏策略),而无需人工提取或启发式学习特征。这种结合了深度学习的强化学习方法称为深度强化学习。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

命题逻辑技术

在逻辑和数学里,命题演算(或称句子演算)是一个形式系统,有着可以由以逻辑运算符结合原子命题来构成代表“命题”的公式,以及允许某些公式建构成“定理”的一套形式“证明规则”。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

学习曲线技术

在机器学习领域,学习曲线通常是表现学习准确率随着训练次数/时长/数据量的增长而变化的曲线

概率分布技术

概率分布(probability distribution)或简称分布,是概率论的一个概念。广义地,它指称随机变量的概率性质--当我们说概率空间中的两个随机变量具有同样的分布(或同分布)时,我们是无法用概率来区别它们的。

收敛技术

在数学,计算机科学和逻辑学中,收敛指的是不同的变换序列在有限的时间内达到一个结论(变换终止),并且得出的结论是独立于达到它的路径(他们是融合的)。 通俗来说,收敛通常是指在训练期间达到的一种状态,即经过一定次数的迭代之后,训练损失和验证损失在每次迭代中的变化都非常小或根本没有变化。也就是说,如果采用当前数据进行额外的训练将无法改进模型,模型即达到收敛状态。在深度学习中,损失值有时会在最终下降之前的多次迭代中保持不变或几乎保持不变,暂时形成收敛的假象。

图像转换技术

图像到图像的转换是从一个域获取图像并对其进行转换以使它们具有来自另一个域的图像的样式(或特征)的任务。

统计模型技术

统计模型[stochasticmodel;statisticmodel;probabilitymodel]指以概率论为基础,采用数学统计方法建立的模型。有些过程无法用理论分析方法导出其模型,但可通过试验测定数据,经过数理统计法求得各变量之间的函数关系,称为统计模型。常用的数理统计分析方法有最大事后概率估算法、最大似然率辨识法等。常用的统计模型有一般线性模型、广义线性模型和混合模型。统计模型的意义在对大量随机事件的规律性做推断时仍然具有统计性,因而称为统计推断。常用的统计模型软件有SPSS、SAS、Stata、SPLM、Epi-Info、Statistica等。

知识图谱技术

知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。 知识图谱这个概念最早由Google提出,主要是用来优化现有的搜索引擎。不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

直推式学习技术

在逻辑学、统计推理和监督学习中,转换或转换推理是从观察到的具体(训练)案例到具体(测试)案例的推理。 这与常见的案例-一般规则-案例的归纳推理有所不同

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

监督学习技术

监督式学习(Supervised learning),是机器学习中的一个方法,可以由标记好的训练集中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。训练集是由一系列的训练范例组成,每个训练范例则由输入对象(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

贝尔曼方程技术

“贝尔曼方程(Bellman Equation)”也被称作“动态规划方程(Dynamic Programming Equation)”,由理查·贝尔曼(Richard Bellman)发现。贝尔曼方程是动态规划(Dynamic Programming)这种数学最佳化方法能够达到最佳化的必要条件。此方程将“决策问题在特定时间点的值”以“来自初始选择的报酬 及 由初始选择衍生的决策问题的值”的形式表示。藉这个方式将动态最佳化问题变成较简单的子问题,而这些子问题遵守由贝尔曼所提出的“最佳化原理”。

迁移学习技术

迁移学习是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题。 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴。

一阶逻辑技术

一阶逻辑是使用于数学、哲学、语言学及计算机科学中的一种形式系统。 过去一百多年,一阶逻辑出现过许多种名称,包括:一阶断言演算、低阶断言演算、量化理论或断言逻辑。一阶逻辑和命题逻辑的不同之处在于,一阶逻辑有使用量化变数。

降维技术

降维算法是将 p+1 个系数的问题简化为 M+1 个系数的问题,其中 M<p。算法执行包括计算变量的 M 个不同线性组合或投射(projection)。然后这 M 个投射作为预测器通过最小二乘法拟合一个线性回归模型。两个主要的方法是主成分回归(principal component regression)和偏最小二乘法(partial least squares)。

马尔可夫决策过程技术

马尔可夫决策过程为决策者在随机环境下做出决策提供了数学架构模型,为动态规划与强化学习的最优化问题提供了有效的数学工具,广泛用于机器人学、自动化控制、经济学、以及工业界等领域。当我们提及马尔可夫决策过程时,我们一般特指其在离散时间中的随机控制过程:即对于每个时间节点,当该过程处于某状态(s)时,决策者可采取在该状态下被允许的任意决策(a),此后下一步系统状态将随机产生,同时回馈给决策者相应的期望值,该状态转移具有马尔可夫性质。

模型选择技术

模型选择是从给定数据的一组候选模型中选择统计模型的任务。对于具有类似预测或解释力的候选模型,最简单的模型最有可能是最佳选择(奥卡姆剃刀)。

多任务学习技术

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

问答系统技术

问答系统是未来自然语言处理的明日之星。问答系统外部的行为上来看,其与目前主流资讯检索技术有两点不同:首先是查询方式为完整而口语化的问句,再来则是其回传的为高精准度网页结果或明确的答案字串。以Ask Jeeves为例,使用者不需要思考该使用什么样的问法才能够得到理想的答案,只需要用口语化的方式直接提问如“请问谁是美国总统?”即可。而系统在了解使用者问句后,会非常清楚地回答“奥巴马是美国总统”。面对这种系统,使用者不需要费心去一一检视搜索引擎回传的网页,对于资讯检索的效率与资讯的普及都有很大帮助。从系统内部来看,问答系统使用了大量有别于传统资讯检索系统自然语言处理技术,如自然语言剖析(Natural Language Parsing)、问题分类(Question Classification)、专名辨识(Named Entity Recognition)等等。少数系统甚至会使用复杂的逻辑推理机制,来区隔出需要推理机制才能够区隔出来的答案。在系统所使用的资料上,除了传统资讯检索会使用到的资料外(如字典),问答系统还会使用本体论等语义资料,或者利用网页来增加资料的丰富性。

聚类技术

将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于分类学,但是聚类不等于分类。聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

机器之心机构

机器之心,成立于2014年,是国内最具影响力、最专业、唯一用于国际品牌的人工智能信息服务与产业服务平台。目前机器之心已经建立起涵盖媒体、数据、活动、研究及咨询、线下物理空间于一体的业务体系,为各类人工智能从业者提供综合信息服务和产业服务。

https://www.jiqizhixin.com/
深度迁移学习技术

在深度迁移学习中,首先在与需要解决问题的类似问题中训练神经网络模型,然后将来自训练模型的一个或多个层用于训练需要解决问题的新模型中。

特征表示迁移技术

该方法通过识别可以从源域到目标域使用的良好特征表示,以此最小化域差异并降低错误率。根据标记数据的可用性,可以将监督或非监督方法应用于基于特征表示的转移。

无监督迁移学习技术

无监督迁移学习与归纳迁移学习设定相同:源域和目标域类似,但任务不同。但在这种情况下,标记数据在任一域中都不可用。

归纳迁移学习技术

在归纳迁移学习方案中,源域和目标域相同,但源和目标任务彼此不同。此算法尝试利用源域的归纳偏差来帮助改进目标任务。

负迁移技术

负迁移一般是指一种学习对另一种学习起干扰或抑制作用。负迁移通常表现为一种学习使另一种学习所需的学习时间或所需的练习次数增加或阻碍另一种学习的顺利进行以及知识的正确掌握。

实例迁移技术

将源域中的知识重用到目标任务通常是理想的场景。在大多数情况下,源域数据不能直接重用,但源域中的某些实例可以与目标数据一起重用以改善结果,这种转换即为实例迁移。

暂无评论
暂无评论~