声纹识别技术五大发展趋势总结

本文基于时下声纹识别技术研究的前沿观点,总结出五大发展趋势

走出实验室的声纹识别技术因其广阔的应用场景和价值,从特定领域到民用领域,在国内外正迎来第一波商用化浪潮。 而与此同时,关于声纹识别技术研究的成熟度以及安全可靠性,一直是应用领域讨论的重点,本文基于时下声纹识别技术研究的前沿观点,总结出五大发展趋势:

1、声纹识别研究朝着深度学习和端到端方向发展

语音作为语言的声音表现形式,不仅包含了语言语义信息,同时也传达了说话人语种、性别、年龄、情感、信道、嗓音、病理、生理、心理等多种丰富的副语言语音属性信息。以上这些语言语音属性识别问题从整体来看,其核心都是针对不定时长文本无关的句子层面语音信号的有监督学习问题,只是要识别的属性标注有不同。

近年来,声纹识别的研究趋势正在快速朝着深度学习和端到端方向发展,其中最典型的就是基于句子层面的做法。在网络结构设计、数据增强、损失函数设计等方面还有很多工作去做,还有很大的提升空间。

2、提升声纹识别系统的短时语音情况

在实际应用中,由于对基于语音的访问控制需求的不断增长,提升声纹识别系统在短时语音情况下的性能变得尤为迫切。短时语音中说话人信息不足以及注册和测试语音的文本内容不匹配,对于主流的基于统计建模的声纹识别系统是一个严峻的挑战。

3、改进现有的深度说话人学习方法

目前采用的深度说话人识别方法首先利用神经网络提取前端的帧级特征,然后通过池化映射获得可以表示说话人特性的段级向量,最后采用 LDA/PLDA 等后端建模方法进行度量计算。

相对于传统的 i-vector 生成过程,基于深度学习说话人识别方法优势主要体现在区分性训练和利用多层网络结构对局部多帧声学特征的有效表示上。如何进一步改进现有的深度说话人学习方法是现阶段的一个研究热点。

4、深度对抗学习在声纹识别技术中的应用

生成式对抗网络 (GAN) 的主要目的是用在数据生成、降噪、等很多场景里面。它还被用在领域自适应里面,形成一个新的分布。第三个广泛的应用是生成对抗样本,这会对分类系统产生大的困扰。很多研究者用对抗样本攻击机器学习的系统,在原始数据上增加一些扰动,生成样本,经过神经网络之后就有可能识别成完全不同的结果。这个思想在图像处理领域非常活跃,会造成错误识别,引起了自动驾驶,安全等领域的研究人员的广泛关注。

在语音领域,GAN 可以用在语音识别、口音自适应上,通过多任务学习和梯度反转层来进行口音或信道的自适应,然后加上其他方法可以得到较好的效果。声纹识别也存在各种不匹配的问题,在声纹识别上也可以使用这一思想。同样的思想也用在了 TTS 语音合成领域,目的是把不同的音素解耦成说话人,风格等,去除噪声对建模的影响。

5、深度嵌入学习是进行声纹识别和反欺骗的一个重要途径

说话人识别和欺骗检测近年来受到学术界和业界的广泛关注,人们希望在实际应用中设计出高性能的系统。基于深度学习的方法在该领域得到了广泛的应用,在说话人识别和反欺骗方面取得了新的里程碑。然而,在真实复杂的场景下,面对短语音、噪声的破坏、信道失配、大规模等困难,开发一个鲁棒的系统仍然是非常困难的。深度嵌入学习是进行说话人识别和反欺骗的一个重要途径,在这方面已有一些著名的研究成果。如之前的 d-vector 特征和当前普遍使用的 x-vector 特征。

4190e9fbd3ee47ff9f8139a19c7e8268.jpg

结语:

目前,指纹识别、人脸识别已经被大众所熟知,但同样作为生物识别的声纹识别,还处于技术挑战的前沿地带。据声纹识别企业快商通分析,当下全球生物识别产业规模庞大,仅声纹识别这一细分方向的市场规模就将近百亿美元,预计2020年更是有望超过200亿美元(合1346亿元人民币),占整个生物识别市场的22.4%。

以国内公共安全领域为例,公安部面向全国推广声纹技术,与指纹库、DNA库类似,声纹库建设是一项有着重要实战价值的工作,具体表现在声纹特征具有非接触式采集的优点,和已有DNA库、指纹库相结合,可形成立体生物特征库,建成后直接为多警种服务,是利用高科技手段在侦破案件和诉讼活动中应用的一个新的增长点,将能有效提高公安机关侦查破案的效率和能力,成为落实科技强警的重要实践之一。目前,公安部已在声纹库建设方面进行了重点布局,并选择快商通等通过公安部标准检测的厂商作为声纹采集设备提供方,力求双发共同完成这项专业技术性强、应用领域广、建设难度大的系统工程。

快商通
快商通

厦门快商通科技股份有限公司是一家以人工智能技术为核心的创新型科技公司,专注于语音声学与内容理解技术的研发与创新,完全自主知识产权的声纹识别技术达到世界领先水平。公司以“产品与技术服务于30亿用户”为企业愿景,深耕行业智能化领域,为全球客户提供智能客服系统、语义理解与对话、声纹识别、营销大数据挖掘等一系列产品及人工智能软硬件解决方案。

产业声纹识别
相关数据
快商通机构

厦门快商通科技股份有限公司创立于2009年,是一家基于自主研发的人工智能引擎平台(快商大脑)的AI公司,针对企业客服、金融、安防、电力、航空、司法、公安等垂直领域推出不同的BI、AI解决方案,分别针对企业客服领域推出智能营销客服机器人、针对金融、安防领域推出声纹安全解决方案,基于大型商超、电力、航空领域推出BI、AI整体解决方案。公司研发团队主要来自国家“千人计划”、华为、百度、Facebook、清华大学、荷兰埃因霍温理工大学、厦门大学等知名互联网企业和高校,目前快商通已在各地建立了多个联合实验室,如在天津设立人工智能研发分公司、在厦门成立了“大数据科学研究基地”,并于在2016年8月挂牌新三板(股票代码:839014)。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

池化技术

池化(Pooling)是卷积神经网络中的一个重要的概念,它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效的原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合。通常来说,CNN的卷积层之间都会周期性地插入池化层。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人脸识别技术

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

语音合成技术

语音合成,又称文语转换(Text to Speech)技术,是将人类语音用人工的方式所产生,能将任意文字信息实时转化为标准流畅的语音朗读出来,相当于给机器装上了人工嘴巴。它涉及声学、语言学、数字信号处理、计算机科学等多个学科技术,是信息处理领域的一项前沿技术,解决的主要问题就是如何将文字信息转化为可听的声音信息,也即让机器像人一样开口说话。

说话人识别技术

说话人识别作为模式识别的一类,主要任务是通过待测试语音来判断对应的说话人身份。 从识别对象进行划分可以主要分为两个部分:说话人确认(speaker verification)和说话人辨认(speaker identification)。如果待测说话人的范围已知,需要通过语音段对待测说话人的身份进行判断,是否是属于某个说话人,则为说话人确认。说话人确认问题可以归结为是一种1:1的身份判别问题。若说话人的身份范围未知,需要从一定的范围内来对语音段对应的说话人身份进行辨别,这属于说话人辨认问题。说话人辨认问题可以归结为是1:N的问题。 从识别语音段的文本,可以讲说话人识别问题分为文本相关问题和文本无关问题。对于文本相关问题,待测试语音段的内容需要和系统中预先登记的内容相同。对于文本无关问题,待测试语音段的内容可以与系统中预先登记的内容不同,待测试说话人可以只说几个字来进行身份认证。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

监督学习技术

监督式学习(Supervised learning),是机器学习中的一个方法,可以由标记好的训练集中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。训练集是由一系列的训练范例组成,每个训练范例则由输入对象(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

语音识别技术

自动语音识别是一种将口头语音转换为实时可读文本的技术。自动语音识别也称为语音识别(Speech Recognition)或计算机语音识别(Computer Speech Recognition)。自动语音识别是一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处理理论、信息论、计算机科学等众多学科紧密相连。由于语音信号的多样性和复杂性,目前的语音识别系统只能在一定的限制条件下获得满意的性能,或者说只能应用于某些特定的场合。自动语音识别在人工智能领域占据着极其重要的位置。

图像处理技术

图像处理是指对图像进行分析、加工和处理,使其满足视觉、心理或其他要求的技术。 图像处理是信号处理在图像领域上的一个应用。 目前大多数的图像均是以数字形式存储,因而图像处理很多情况下指数字图像处理。

对抗样本技术

对抗样本是一类被设计来混淆机器学习器的样本,它们看上去与真实样本的几乎相同(无法用肉眼分辨),但其中噪声的加入却会导致机器学习模型做出错误的分类判断。

多任务学习技术

推荐文章
暂无评论
暂无评论~