学术君作者

干货!情感分析实用数据库,都在这里了!

众所周知,人随时随地都会有喜怒哀乐等情感的起伏变化。那么在人与计算机交互过程中,计算机是否能够体会人的喜怒哀乐,并见机行事呢?

与机器人玩耍的人类小孩

情感计算研究就是试图创建一种能感知、识别和理解人的情感,并能针对人的情感做出智能、灵敏、友好反应的计算系统,即赋予计算机像人一样的观察、理解和生成各种情感特征的能力。

传统的情感计算方法是按照不同的情感表现形式分类的,分别是:文本情感分析、语音情感分析、视觉情感分析。学术君以此整理了四个情感计算的常用工具及数据库,供参考。

以下内容摘自AI报告《人工智能情感计算》。

十个文本情感分析API

文本情感分析,简而言之就是对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程。

得益于互联网的飞速发展,人们在社交媒体上留下了大量的对人物、事件、产品等的评论信息,这些信息里饱含着各种情感色彩和情绪倾向。

基于这些带有主观色彩的评论,我们可以了解大众舆论对某一事件或产品的看法。

下面,是学术君整理的10个常用情感分析API。


常用的语音情感数据库

语音情感识别研究的开展离不开情感语音数据库的支撑。情感语音库的质量高低,直接决定了由它训练得到的情感识别系统的性能好坏。学术君综合多项参数,整理了10个常用的语音情感数据库

常用视觉情感数据库

表情作为人类情感表达的主要方式,其中蕴含了大量有关内心情感变化的信息,通过面部表情可以推断内心微妙的情感状态,计算机进行自动人脸表情识别所利用的主要也是视觉数据。

视觉情感信号的识别和分析主要分为面部表情的识别和手势识别两类。

面部表情识别

1

对于面部表情的识别,要求计算机具有类似于第三方观察者一样的情感识别能力。由于面部表情是最容易控制的一种,所以识别出来的并不一定是真正的情感。但也正由于它是可视的,所以它非常重要,并能通过观察它来了解一个人试图表达的东西。

下面是学术君整理的常用表情分析数据库

手势分析数据库

2

对于手势识别来说,一个完整的手势识别系统包括三个部分和三个过程。三个部分分别是:采集部分、分类部分和识别部分;三个过程分别是:分割过程、跟踪过程和识别过程。

手势识别的基本框架

根据识别效果和使用范围,学术君整理出以下手势分析数据库

AMiner学术头条
AMiner学术头条

AMiner平台由清华大学计算机系研发,拥有我国完全自主知识产权。系统2006年上线,吸引了全球220个国家/地区800多万独立IP访问,数据下载量230万次,年度访问量1000万,成为学术搜索和社会网络挖掘研究的重要数据和实验平台。

https://www.aminer.cn/
专栏二维码
工程数据库情感分析
2
相关数据
感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

数据库技术

数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增、截取、更新、删除等操作。 所谓“数据库”系以一定方式储存在一起、能予多个用户共享、具有尽可能小的冗余度、与应用程序彼此独立的数据集合。

情感计算技术

情感计算(也被称为人工情感智能或情感AI)是基于系统和设备的研究和开发来识别、理解、处理和模拟人的情感。它是一个跨学科领域,涉及计算机科学、心理学和认知科学(cognitive science)。在计算机领域,1995年Rosalind Picard 首次提出affective computing。研究的目的是使得情感能够模拟和计算。这个技术也可以让机器人能够理解人类的情绪状态,并且适应它们的行为,对这些情绪做出适当的反应。这是一个日渐兴起的兴欣领域

语音情感识别技术

语音情感识别通常指机器从语音中自动识别人类情感和情感相关状态的过程。

面部表情识别技术

面部表情识别的任务是将面部图像上的表情分类为各种类别,如愤怒,恐惧,惊讶,悲伤,快乐等。

推荐文章
暂无评论
暂无评论~