参考链接:
https://github.com/thunlp/PLMpapers
Auto Byte
专注未来出行及智能汽车科技
微信扫一扫获取更多资讯
Science AI
关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展
微信扫一扫获取更多资讯
预训练语言模型(PLM)是 NLP 领域的一大热门话题。从 BERT 到 GPT2 再到 XLNet,各种预训练模型层出不穷,不少同学感叹,「大佬慢点,跟不上了……」那么,这么多预训练模型要怎么学?它们之间有什么关联?为了理清这些问题,来自清华大学的两位本科同学整理了一份预训练语言模型必读论文列表,还用图的形式整理出了这些模型之间的复杂关系。
参考链接:
https://github.com/thunlp/PLMpapers
ELMO 是“Embedding from Language Models”的简称, ELMO 本身是个根据当前上下文对 Word Embedding 动态调整的思路。ELMO 采用了典型的两阶段过程,第一个阶段是利用语言模型进行预训练;第二个阶段是在做下游任务时,从预训练网络中提取对应单词的网络各层的 Word Embedding 作为新特征补充到下游任务中。