机器之心编辑部报道

ICLR飞升,IJCAI降级:清华的新版AI顶会评级引发学术圈热议

人工智能领域发展到今天,哪些学术会议和期刊称得上顶级?清华大学刚刚提出的「计算机科学推荐学术会议和期刊列表」对于这些论文投稿目标有了新的评级。更为重要的是——它直接与清华学生的毕业产生了关联。

对于研究生和博士来说,国际会议和期刊的评级可谓关键指标,清华计算机系的新规定和评级迅速引发了校内师生的广泛关注,讨论也很快扩展到了整个学术圈。

最近,清华大学计算机学位评定分委员会针对其负责的计算机科学与技术、软件工程、网络空间安全三个一级学科,制定了「研究生学位创新成果要求」。与此同时,同时分委员会还发布了最新版《清华大学计算机学科推荐学术会议和期刊列表》。

在我们比较关注的人工智能方向上,清华大学的列表就引来了不少议论。

大幅减少会议期刊数量

简单说来,与目前国内最为通用的中国计算机学会(CCF)版国际会议和期刊目录不同,清华大学新推出的分级标准只分 A、B 两类期刊,而且列表上的期刊数量也变少了。以往,B 类被认为是大神文章和普通文章的分水岭,而没有了 C 类则很可能让研究生们的毕业难度有所提高。此外,被清华评定为 A 类的期刊和会议与 CCF 有所不同。

仅看 AI 领域:清华把 CCF 定为 B 类的 ECCV 、COLT、EMNLP 、ICRA 评定为 A 类,同时新增了 ICLR 、RSS 为 A 类会议。也就是说,由深度学习三大巨头之二的 Yoshua Bengio 和 Yann LeCun 牵头创办、短短成立 6 年的国际学习表征会议(ICLR),此次被清华大学列为 A 类顶会。

在期刊方面,清华新增了 TR、TASLP 为 A 类期刊。

当然也有从 A 类「降级」到 B 类的学术会议:它就是 AI 领域的首个国际性的学术会议 IJCAI。

香港科技大学教授、微众银行首席 AI 官杨强评论说:「不知道清华大学这个排名用目标函数是不是『引用数』,如果只用引用数的话,排名的结果和我们所期望的影响力不一样。影响力的目标函数应该是(连接度+权威度),所谓『Hub and Authority』,参考 Jon Kleinberg。否则很容易被小圈子所利用。」

另外,在数量上,与 CCF 的列表相比,清华给出的人工智能方向列表在期刊和会议数目上都有所减少,大大增加了投稿的难度。

清华大学的文件还对于申请计算机相关学科的博士、硕士学位设置了标准,学生需要根据《研究生申请学位创新成果计分办法》至少获得 6 分才有资格申请博士学位;而申请硕士学位,则至少需要 2 分。而根据推荐会议和期刊列表,一篇 A 类得 4 分,一篇 B 类得 2 分。国际会议论文只认可长文,以及做口头报告的不少于 6 页的短文。若 B 类论文获得最佳论文或最佳学生论文奖,则等同于 A 类论文。

这份规定从今年 9 月入学的新生开始执行,以往的高年级学生依然按照过去的考评标准。

清华版 AI 顶会和期刊列表

据《学术头条》报道,《清华大学计算机学科推荐学术会议和期刊列表》将计算机学科划分为 10 个方向,分别是高性能计算、计算机网络、网络与信息安全、系统软件与软件工程、数据库与数据挖掘、理论计算机科学、计算机图形学与多媒体、人工智能模式识别人机交互与普适计算、综合与交叉。

人工智能模式识别方向,清华推荐了 12 个 A 类会议,17 个 B 类会议;A 类期刊 6 个,B 类期刊 33 个。

A 类会议

B 类会议

A 类期刊

B 类期刊

CCF 版 AI 顶会和期刊列表

清华大学发布的 CS 会议期刊列表和中国计算机学会的有哪些不同呢?2018 年 12 月,CCF 启动了新一轮《目录》的更新工作,并于今年 4 月发布了最新版的目录。对于计算机相关专业的学生们来说,CCF 目录是论文投稿的重要指标。不过 CCF 表示,该目录是值得计算机界研究者们发表研究成果的推荐列表,其目的不是作为学术评价的唯一根据,而仅作为 CCF 的推荐建议业界参考。

与清华版人工智能模式识别方向对应的是 CCF 人工智能方向。CCF 人工智能方向 A 类会议 7 个,B 类会议 12 个;C 类会议 21 个;A 类期刊 4 个,B 类期刊 21 个,C 类期刊 36 个。

目前在最新版的目录中,人工智能领域的 A 类期刊为:

而 A 类学术会议为:

可以看出,CCF 版的七大人工智能学术会议基本早已成为大多数人认知中的「AI 顶会」。自 2010 年 CCF 发布计算机国际会议和期刊目录后,计算机科学领域内的国际会议重要性被人们逐渐确立起来,这改变了过去国内计算机科学领域仅依靠 SCI 影响因子评价的情况,让国内学界逐渐与国际发展接轨。

不过在中国计算机学会版《目录》出现的 9 年之后,清华大学似乎已对未来计算机科学的学术评价有了新的思路。据悉,清华的学术期刊和会议标准,是根据论文引用的中位数、10H、H5 指数等指标进行量化后,再以人工(专家)意见为辅经过细微调整后得出的。

随着学术和领域的发展,我们正在看到更加符合目前发展规律的评价方式不断出现,清华大学的新标准是否会业内带来变化?我们还需拭目以待。

参考内容:

https://mp.weixin.qq.com/s/ZP0_hxNSECAHbQEcIDe_tg

https://www.ccf.org.cn/xspj/gyml/

入门国际会议与期刊评级清华大学
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

模式识别技术

模式识别(英语:Pattern recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。 我们把环境与客体统称为“模式”。 随着计算机技术的发展,人类有可能研究复杂的信息处理过程。 信息处理过程的一个重要形式是生命体对环境及客体的识别。其概念与数据挖掘、机器学习类似。

人机交互技术

人机交互,是一门研究系统与用户之间的交互关系的学问。系统可以是各种各样的机器,也可以是计算机化的系统和软件。人机交互界面通常是指用户可见的部分。用户通过人机交互界面与系统交流,并进行操作。小如收音机的播放按键,大至飞机上的仪表板、或是发电厂的控制室。

推荐文章
暂无评论
暂无评论~