量子机器学习公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

这份报告始于 2018 年,主要包括研究、人才、产业、中国、政治、预测等几个部分,两位作者逐年更新基础版本,及时捕捉人工智能快速发展的快照,他们将这份报告看作是「我们所见过的最有趣的事情的汇编。」

撰文 | 微胖

2019 年已然过去一半,现在是人工智能报告的季节。过去一段时间,我们接连看到几篇关于人工智能现状的报告,均出自风投领域的投资人和观察家们,他们一直密切关注人工智能的方方面面,从技术突破、到对经济与社会的影响。

之所以选择伊恩·霍加斯(Ian Hogarth )与内森•贝纳希 (Nathan Benaich) 合著的《2019 年人工智能状况报告》(State of AI Report 2019),主要考虑到两个因素。

首先,两位作者都是从事人工智能领域投资的专业人士。伊恩·霍加斯不仅是人工智能天使投资人,也是伦敦大学学院 IIPP(Institute for Innovation and Public Purpose,创新与公共福祉研究院)客座教授。内森•贝纳希创办了 Air Street Capital,专门从事人工智能投资,也是 RAAIS(研究与应用人工智能峰会,Research and Applied AI Summit) 创始人,这一个由专注于人工智能技术的科学与应用的人工智能企业家、研究人员和运营商组成的全球社区。

其次,和其他报告不同,他们专辟一章介绍中国。贝纳希在接受媒采访时解释说,虽然中国在某些方面落后,但生态系统无疑正朝着正确的方向发展,巨大的资源也正推动着它的增长。而且,中国国内和国外的消费者互联网已经脱钩:阿里巴巴腾讯百度在中国的影响力比谷歌、亚马逊或 Facebook 大上几个数量级,这也是他们将专门一个章节献给中国的重要原因。

这份报告始于 2018 年,主要包括研究、人才、产业、中国、政治、预测等几个部分,两位作者逐年更新基础版本,及时捕捉人工智能快速发展的快照,他们也将这份报告看作是「我们所见过的最有趣的事情的汇编。」因此,读者会发现报告并非至始至终源自作者撰写和制图,一些内容直接取自第三方资料,比如彭博社等。据作者介绍,写作过程中也借鉴了人工智能领域知名专家的一些观察。比如,谷歌人工智能研究员和 Keras 深度学习框架的领导者 Francois Chollet,李开复,以及 Facebook 人工智能研究员 Sebastian Riedel。

鉴于我们更多关注产业面向,本文省略科研(research)、政治部分的介绍。对这两部分感兴趣的读者,可以直接浏览报告原文。

1 产业

1、宏观经济形势依然火热。与 2017 年相比,2018 年投资于人工智能的资金增长了近 80%,每年超过 270 亿美元,北美以 55% 的市场份额领先。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

大型科技公司继续「吞噬」人工智能初创企业。Twitter 收购 Fabula AI,为了增强其机器学习专业技能。Lyft 收购 Blue Vision Labs 用于 3D 地图创建,Niantic 收购 Matrix Mill 用于现实移动 AR, Facebook 收购 Bloomsbury,DeepMind 医疗服务并入母公司医疗部门,IBM 收购了 Red Hat。如果从 2010 年起算,几个互联网传统巨头已累计完成 60 起 AI 公司收购案。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

而且,最好的人工智能创业公司越来越容易获得大规模融资Graphcore 获得了 2 亿美元的 D 轮融资,Darktrace 获得了 5000 万美元的 E 轮融资,UiPath 在 12 个月内通过三轮融资筹集了近 10 亿美元。尽管中国创业公司的融资规模并不如去年那么庞大(当时,多家公司筹集了超过 10 亿美元的资金),今年仍然不乏大规模融资。比如,Face++(旷视科技)D 轮融资 7.5 亿美元、地平线 B 轮融资 6 亿美元等。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

2、RPA 和自动驾驶汽车正如报告中所强调的,这些资金投入的一些应用领域是机器人 (主要用于制造和物流)、RPA(机器人过程自动化)、医疗保健、需求预测、自动驾驶汽车文本分析

其中,根据报告所述,与机器人无关的 RPA 是「企业在一夜之间成功之前,酝酿了 15 年」。贝纳希指出,RPA 的行业应用似乎正在快速增长,这主要是因为它为企业带来的好处: 降低了运营成本,提高了与新进入者竞争的运营灵活性。

RPA 公司也进行了多轮融资:RPA 公司获得了大量融资:UiPath 在 2018 年的两轮融资中筹集了 8 亿美元,在 2019 年的一轮融资中筹集了 8 亿美元,而 Automation Anywhere 在 2018 年的两轮融资中筹集了 5.5 亿美元。

然而,报告作者提醒读者仍有理由对 RPA 持怀疑态度,「至少在现阶段,RPA 更多的是关于自动化,而不是智能,更多的是基于规则的解决方案,而不是人工智能。」

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

另一个引人注目的应用领域是自动驾驶汽车 (AV)。在美国,玩家继续对自主驾驶汽车公司进行巨额投资,包括 Cruise(2018 年和 2019 年两轮融资 19 亿美元)、Nuro(B 轮 9.4 亿美元)和 Aurora(B 轮融资 6 亿美元)。正如两位作者所指出的,自动驾驶汽车现在是一场数十亿美元资产负债表的游戏,他们分别列出了 Waymo、Uber、Cruise 以及福特等公司的支出,以证明自己的观点。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

值得注意的是,今年出现了退出案例。比如,Uber 关闭自动驾驶卡车项目,自动驾驶创业公司 Drive.ai 的永久关闭。尽管加州和其他地方投资和现场测试都在增长,但是,一些玩家很有可能爽约曾约定的发布日期,而另一些玩家则保持沉默。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

报告作者指出,虽然加州人平均每年开车 14435 英里,但 2018 年只有 11/63 的公司的自动驾驶汽车的行程超过这个数字。2018 年,Waymo 驾驶里程超过 100 万英里,几乎是排名第二的通用汽车 Cruise 的三倍,是排名第三的苹果的 16 倍。至于特斯拉,它没有向加洲汽车管理局 (California DMV) 报告脱离接触的指标。然而,据称特斯拉拥有的数据比其他任何公司都多,这让它在竞争中占了上风。

3、芯片与地缘政治。特斯拉还设计了自己的人工智能芯片,为机上所需的计算提供动力。这是另一个创新的热点领域,因为它正在推动人工智能的能力。

报告认为,现在正是开发新型芯片的好时机,这种芯片是专门为人工智能模型的训练和推理而设计的。

「我们认为这是正确的,因为人工智模型正被用于几个大规模的行业用例,特别是在消费者互联网。因此,芯片设计师有一个明确设计服务对象。然而,设计芯片是一项非常资本密集型的工作,需要大量的领域经验,而这些经验只能经过多年才能获得。」

按照贝纳希的推理,这也与地缘政治密切相关。打造这种「深度」或「核心」不可知技术的公司,占人工智能初创企业的十分之一,但它们的影响力超过了自身的分量,吸引了五分之一的风险资本投资:

「谈到『深度技术』(例如半导体),美国 (以及韩国和英国等其它关键国家) 仍占据主导地位。这意味着中国在这类技术上仍然严重依赖进口。事实上,中国进口半导体的支出是出口半导体的 7 倍。」

正如伊恩•霍加斯 (Ian Hogarth) 在他的《人工智能民族主义》文章中所指出的那样,「中国肯定会努力消除这一关键的贸易逆差,而 1400 亿美元的『大基金』表明政府必须缩小逆差的承诺。我们还相信,中国领先的科技公司将加大对欧洲深度科技公司的收购力度。

报告也包括了预测。他们曾在 2018 年的报告中预测有一笔超过 50 亿美元的并购交易将被阻止。虽然这还没有实现,但作者们仍然支持他们的预测。贝纳希指出,中国的科技生态系统正在飞速发展。

「特别值得注意的是,该生态系统的重点是培育人工智能优先技术公司的增长。根据最近统计,中国是估值超过 10 亿美元的人工智能初创企业数量最多的国家。可以说,这些人工智能初创企业的规模速度是世界上首屈一指的。」

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

另外,在对人工智能任务的移动芯片组性能进行基准测试中,高通 Snapdragon 表现出很强的性能和很强的加速性能,从而赢得了胜利。智能手机榜单中,三星华为小米位居榜首,谷歌的 Pixel3 则占据 22 位。

同时,计算和竞争也正被推向边缘。谷歌和英伟达在 2025 年将人工智能计算应用于连接设备产生的 40 万亿 GB 数据上。另一方面,亚马逊推出了 SageMaker Neo,让开发者在云上培训 ML 模型,并根据特定的边缘硬件平台导出优化模型。

报告指出,5G 提供了更快、更稳定的信息传输潜力。拥有 5G 的组织或国家将为世界其他地区制定标准。现在,中国远远领先于美国。

4、现实世界中的机器人。清扫机器人方面,总部位于圣地亚哥的 AI 机器人公司 Brain Corp 今年表示将扩大与沃尔玛的关系,于今年年底之前在全国范围内向其他 1500 个机器人地板清洁工提供操作系统 BrainOS。另外,沃尔玛还计划导入 300 台货架扫瞄机器人、1,200 台快速卸货设备以及 900 台取货塔(Pickup Tower)。

波士顿动力的 Atlas 继续探索技术极限,学会了跑酷,而今年 4 月,这家公司宣布了第一笔重大收购交易,收购对象是一家位于旧金山湾区的初创公司 Kinema Systems (http://www.kinemasystems.com/),该公司专为物流拣选系统开发 3D 成像解决方案,并已进入特定仓库和物流的产品环境。这笔收购交易透露出波士顿动力已经考虑变现问题。

在物流领域,追赶 Kiva 的物流机器人来了。位于波士顿的创业公司伯克希尔·格雷公司 (Berkshire grey)研发的系统(公司 CEO 曾担任 iRobot 的 CTO),据报道超越了亚马逊机器人助手。他们使用机器人拣选、包装和运送大多数物品, 通常没有任何人与人的接触。

亚马逊这边,正在大力挖掘其物质基础设施,并推出更多的仓库机器人完成履行与分类工作。在今年早些举办的 re:MARS 会议上,公司透露已在全球部署了 200,000 个机器人。更早些时候,亚马逊在美国大约 25 个履行中心部署了超过 100,000 个机器人系统,其中包括自己的本土系统和第三方。最近,亚马逊还发布了一对新的机器人 Xanthus 和 Pegasus。

美国工厂正在安装创纪录数量的机器人,而且这种部署发生在各行各业。2018 年全美公司采购的机器人数量达到 35880 台,同比增长 7%。值得注意的是,虽然历史上大多数机器人都是由汽车行业购买的,但这一年,16702 个机器人流向了非汽车公司,各个领域企业所采购的机器人数量都有所提升,包括食品和消费品、塑料和橡胶、生命科学、电子产品。

中国上海,ABB 将投资 1.5 亿美元新建机器人工厂,实现用机器人制造机器人。新的上海工厂将采用大量机器学习、数字化和协作解决方案,使其成为机器人行业中最先进、自动化与柔性化程度最高的工厂。

5、需求预测。2015 年创建的对冲基金中 40% 依赖于计算机模型做投资决策。如今,对冲基金和银行们正招聘越来越多的数据科学家。随着越来越多的信息可以数字化,比如卫星信息、社交媒体、ERP 等,对冲基金就有可能借助人工智能预测需求。

在 AI 与零售高级分析的结合中,最显著的应用是需求预测。今年年初,BCG 与谷歌公司携手开展了一项研究,结果显示:通过大规模使用人工智能和高级分析,消费品公司可以实现超过 10%的营收增长。其中,需求预测对拉动企业业务增长的重要性排在了第一。

在能源与自然灾害预测方面,AI 也取得不俗成绩。谷歌 DeepMind 将风力发电价值提升了 20%。虽然人类不能消除风能的可变性,但可以利用机器学习技术,让风力发电变得足以可预测和更有价值,帮助风电场运营商对其发电量如何满足电力需求进行更智能、更快和更多数据驱动的评估。

在洪水预测上,来自谷歌、以色列理工学院以及巴伊兰大学的研究人员描述了一种机器学习系统,可以准确预测河流洪水。根据 2018 年季风季节生成的警报,模型预测的准确率可达 300 米,召回率和准确率分别超过 90% 和 75%。研究人员甚至认为,机器学习技术是改善未来预测的关键,这些技术将来可能会被用来预测不是用物理模型模拟的事件,如融雪和河流排放。

6、医疗领域。过去十二个月中,FDA 一共批准了三款 AI 诊断设备进入市场。

2018 年 4 月初,FDA 批准通过 IDx 公司研发的首个应用于一线医疗的自主式人工智能诊断设备 IDx-DR 的软件程序,该程序可以在无专业医生参与的情况下,通过查看视网膜照片对糖尿病性视网膜病变进行诊断;5 月,FDA 允许 Imagen 公司的 OsteoDetect 软件进行上市销售,这是一种计算机辅助检测和诊断软件,它使用人工智能算法来分析二维 X 射线图像中桡骨远端骨折(常见手腕骨折类型)的情况;11 月,MaxQ AI 宣布其 AI 产品 Accipio Ix 已获得美国 FDA510(k)营销许可。Accipio Ix 是一种 AI 工作流程软件,可帮助临床医生确立可能出现急性颅内出血的成人患者治疗的优先级。

在药物研发领域,制药公司也正与 AI 驱动的药物研发公司合作。

7、文本自然语言处理是 AI 领域下一个极具挑战性同时又十分有前景的分支。如今通过扫描文字,AI 能够理解文字的意思并将文字数据化。AI 公司经常将维基百科作为机器学习资源,AI 创业公司 Primer 也想为维基百科做一些回馈。他们正在使用机器学习来检索科学研究的资料,找到那些被维基百科忽略了的科学巨人。结果显示,经常被全球各种各样的百科全书所忽略的常常是女性科学家。

8、专利。从 2012 年到 2017 年,AI 专利增速远大于 AI 科研作品数量。随着机器学习科研成果被用于商业领域,科研论文与专利比率显著下滑。其中,机器视觉领域的专利最多,生物识别堪称之冠。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告



量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

2 人才

1、就人才而言,专家们有一个共识:人工智能人才受到高度追捧 (并得到回报),培训投资正在上升。尽管如此,人工智能人才短缺仍然是该技术在整个行业广泛应用的一个主要瓶颈。一种减轻这种情况的方法是 AutoML,也就是说,使用机器学习以某种递归方式自动化应用机器学习过程中越来越多的部分。在报告中,AutoML 被证明能够重新设计神经网络,这些网络比人类设计的在资源受限的移动设备上运行的网络更好。

2、谷歌继续在 2018 年的 NeurIPS 学术人工智能大会上占据主导地位,如果以研究论文产出衡量,谷歌是最具生产力的组织之一。

另外,不平等或者说不均衡现象,在人才方面很常见。例如,在 NeuIPS、ICML 或 ICLR 发表论文的 4000 名研究人员中,88% 是男性;收入方面,大型科技公司的高级工程师薪酬接近 100 万美元。而在中国底层从事数据标记工作的劳动力,每小时挣 1.47 美元,即便如此,人数也出现了巨大增长。

3、欧洲或英国将成为全球人工智能研发实验室吗? 由于两位作者都位于英国伦敦,所以对欧洲和英国的前景特别感兴趣:

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

「我们正处在一个难以置信的变革时期。经济正在发生变化。治理在不断变化。我们应对最严峻的社会挑战的唯一方法是借助强大的技术,比如人工智能——可行、安全、合乎道德的人工智能。这就是欧洲的独特优势所在。」

贝纳希认为,欧洲科技产业在过去 10 年里蓬勃发展,一个既成熟又可持续融资的新生态系统正在出现:「这将对欧洲和英国人工智能未来几年的命运产生重大影响。背景很重要。在英国退欧和美中贸易战之际,所有人都想知道,欧洲——尤其是英国——将在全球经济中扮演什么角色。

有人认为,谷歌将利用欧盟去年实施的严格隐私规定,成为道德行业的领导者。但现实可能会有所不同:英国似乎注定要成为全球人工智能研发实验室。在过去,主要的驱动力是像牛桥、帝国理工和伦敦大学学院这样的优秀大学。他们培养了如今在美国领先科技公司工作的人才。

但是,现在发生了更多变化。在过去 18 个月里,美国科技公司已深入英国的生态系统,以加强它们的人工智能产品。除此之外,瑞士也和英国一样,均属于欧洲 AI 研发实验室的位置。而美国和中国的生态系统更加成熟,无论是人才流入或者流出呈现低水平状态。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

4、今年还有一个现象值得关注,大量雇佣 AI 研究人员的趋势似乎正在放缓,巨头们冻结或者正在减少对科研人才的雇用需求,这可能暗示公司现在更需要那些能将科研成果转化为产品的人才。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

3 中国

1、中国互联网公司已将人工智能东风吹到畜牧领域。为了顺应智能养殖的行业趋势,中国畜牧业协会甚至正式成立智能畜牧分会。

作为猪肉消费大国,中国养一头猪的成本相当于美国养两头猪;养殖规模 1 万头以上的养猪场数量占比仍不足 1%,规模化养殖发展速度较慢;猪肉价格也波动频繁。网易阿里巴巴京东陆续推出的「智能养猪」,以改变养猪现状。比如,京东推出引以为豪的「猪脸识别」;在养猪场,Dekon 集团、Tequ 集团和阿里巴巴云合作,使用计算机视觉语音识别系统识别猪的侧翼纹身数字,并监测脆弱的小猪是否发出痛苦的尖叫声。

腾讯 AI 团队基于人脸识别技术研发出一套适用于鹅脸识别技术解决方案,用以实现对每只鹅进行建档、投食等精细化管理;华为推出的「AI 养牛」;京东提出的跑步机项目,在养鸡过程中,通过 AI 自动喂食喂水和废物清除。

四川西昌有着全球最大的蟑螂养殖基地,他们使用人工智能系统来收集和分析多达 80 种特性,如蟑螂的湿度、温度和食物需求,刺激昆虫的生长和繁殖速度,养殖效率达到了很高水平,每年可以培育 60 亿只蟑螂。该基地的蟑螂主要用于制药。

2、无处不在的人脸识别巨头互联网公司提供人脸识别技术为保险公司识别客户身份;用户可以通过刷脸完成交易;商家利用人脸识别技术验证合作伙伴作者,或为其他平台许可人脸识别技术。中国的人脸识别技术与西方同样优秀,但在商业化部署方面,已经远远领先。

许多宾馆、学校和幼儿园都部署了刷脸门禁系统。一些大学甚至采用人脸识别系统,发现替考者。在北京,一家肯德基连锁店会扫描客户的脸,然后根据包括年龄、性别和情绪在内的因素向客户推荐食物。作为在全国推广「文明」行为的一部分,包括深圳和济南在内的数十个城市,都部署了人脸识别系统,发现和惩治不遵守交通规则的人。

3、中国企业研发支出增长迅速,同比增幅达到 34%,但市场份额明显滞后,在全球科技支出占比上,仅 17%,美国企业占 61%。原因主要有以下几点:

BAT 等巨头更倾向于通过收购而非自主研发来实现创新;研发预算的购买力差异,尤其是在招聘科学家和工程师方面,美国所需成本较高;中国科技企业相对仍较年轻,业务在全球的覆盖和预算都相对较少,硅谷巨头们的收入高于中国大型科技企业,如果以研发支出在销售收入中的占比来衡量的话,这一差距就没有那么大了。

报告指出虽然目前在研发支出方面,美国企业遥遥领先于中国,但随着时间发展,两国会逐步缩小差距。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

4、中国半导体贸易逆差,正在(缓慢)加大。一方面,中国电子制造产业登顶,目前拥有全球智能手机、计算机、电子消费品等细分行业 80% 以上的产能,在物联网、5G、智能家居等领域也保持着相对领先的地位。人工智能虚拟现实、物联网等领域的发展,推动各类芯片嵌入到汽车、咖啡机、家电等产品;然而,另一方面,尽管中国企业在半导体领域投入巨大资金,但因缺乏足够的时间积累,欧美企业占据中高端芯片市场的局面仍然是一个长期演变的过程。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

5、中国的工业自动化水平不断提高,工作岗位不断更换。在过去的三年里,一些中国的工业企业已经自动化了 40% 的劳动力。这可能部分归因于自 2012 年以来,中国每年的机器人安装数量增长了 500%(欧洲为 112%)。然而,目前尚不清楚 AI 在机器人的应用程度上有多高。另一方面,机器人正在中国推动自动化仓储,比如。京东位于上海的履行中心使用自动化仓库机器人每天组织、挑选和运送 20 万份订单。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告



值得注意的是,今年三月,高盛曾走访一批新的中国工厂,很多新建产能自动化程度堪称全球领先,但是高盛也谈到了中国自动化存在的问题,比如过分追求自动化对于中国来说并不一定是经济效益最优。一方面,大力推广机器人换人后,一旦比如日本机器人出现问题,要等半个月才能有日方工程师过来修理;另一方面,在机器之心记着采访传统制造业(比如制鞋)升级过程中也发现,巨头外企也很难耐心结合产业实际情况,针对水土不服的标准品做进一步深入的调研与深度定制化。

6、尽管贸易紧张,但中国企业仍在美国公开市场进行 IPO。以 2018 年为例,约有 33 家中国公司在纽约证交所和纳斯达克证交所上市,其中包括腾讯音乐娱乐、视频平台爱奇艺以及电动汽车制造商蔚来。2018 年中国企业在美国 IPO 数量远超过 2017 年的 17 起,也是自 2010 年 39 起 IPO 以来最多的。一些外国分析家表示,鉴于全球市场贸易紧张关系加剧和疲软,中国企业在美国发行新股的数量显得有点儿不同寻常。然而,今年活跃的上市交易并未转化为强劲的业绩,在美国上市的中国企业表现并不太好。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

7、中国拥有最多的专利,但 2017 年只有 23% 是「发明专利」。众所周知,发明专利的审批过程充满挑战,一旦获得批准,相关专利将获得 20 年的保护,也代表了推进技术「显著进步」的新思路。然而,数据证明,这些专利在申请后并未得到有效保留。尽管国内企业提交了大量专利申请,但是因为专利权人不愿意支付不断增加的专利费用,大多数专利在五年后即被废弃:

61% 的实用新型专利和高达 91% 的外观设计专利在 5 年后被废弃。相比之下,美国 5 年历史专利的维护费占总额的 85.6%。

发明专利的低占比以及其他专利的高废弃率意味着中国仍有很长的路要走,虽然数量领先,但在质量上与美国同行的差距仍很明显。中国的专利质量需要持续提高,直到真正成为技术先进的国家。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

8、中国正在出版更具影响力的机器学习学术研究。关于基础研究进展,我们可以考虑以下几个方面:a) 被主要学术研究会议接受的论文数量;b) 这些论文的被引频次;c) 计算机科学和工程等相关课程的国际大学排名。

从第一个和第二个指标来看,中国对全球人工智能研究产出的贡献正在上升。其中,中国发表的顶尖 AI 论文数量已经超过美国;就被引频次来看,所有论文中,引用次数前 50% 的论文中美各自的占比,可以看出到 2020 年,这一部分论文中美所占比例将持平,各自占到四分之一左右;而后,便是中国大幅度领先。

全球引用次数前 1% 的 AI 论文,也就是真正具有最高影响力、最高学术价值的那一部分,美国几乎是停滞不前的,中国则高速前进。根据图中预测,按照如今速度发展,2025 年,在 TOP 1% 的 AI 论文中,中国占比也将超越美国,双方各占半壁江山,而其后,中国可能会超过美国。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告


在第三项指标上,我们可以看到,在全球排名前 20 名的大学中,美国和欧洲的大学仍然占绝大多数。尽管如此,清华大学和北京大学的计算机科学和工程课程都进入了前 20 名。另外,人工智能的大学课程入学率正在增长,特别是在中国。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

4  预测

报告最后,作者例行针对未来 12 个月,提出六个预测。下图是作者 2018 年预测实现情况,至于最新的六大预测是否会实现,拭目以待。

量子ML公司登场,自动驾驶打脸季,投融资马太效应显著|AI重磅报告

1. 有一波新的初创企业应用了 NLP 研究的最新突破。在接下来的 12 个月里,他们共同筹集超过 1 亿美元的资金。

2. 自动驾驶技术仍处于研发阶段。2019 年,没有一家自动驾驶汽车公司的行驶里程超过 1500 万英里,这相当于加利福尼亚 1000 名司机一年的里程。

3. 非 GAFAM Fortune 2000 公司采用了隐私保护 ML 技术,以增强其数据安全性和用户隐私政策。

4. 高等学校设立专门的人工智能本科学位填补人才空缺。

5. 谷歌在量子计算硬件方面取得了重大突破,引发至少 5 家尝试进行量子机器学习新公司成立。

6. 随着人工智能系统越来越强大,人工智能的治理成为一个更大的话题,至少有一家主要的人工智能公司对其治理模式进行实质性的改变。

产业自动化机器学习自动驾驶技术量子计算智慧金融智能汽车机器人机器学习自动驾驶人工智能
相关数据
亚马逊机构

亚马逊(英语:Amazon.com Inc.,NASDAQ:AMZN)是一家总部位于美国西雅图的跨国电子商务企业,业务起始于线上书店,不久之后商品走向多元化。目前是全球最大的互联网线上零售商之一,也是美国《财富》杂志2016年评选的全球最大500家公司的排行榜中的第44名。

https://www.amazon.com/
相关技术
Waymo机构

Waymo是Alphabet公司(Google母公司)旗下的子公司,专注研发自动驾驶汽车,前身是Google于2009年开启的一项自动驾驶汽车计划,之后于2016年独立。2017年10月,Waymo开始在美国亚利桑那州的公开道路上试驾。2018年12月,Waymo在凤凰城郊区推出了首个商业自动乘车服务Waymo One。

http://www.waymo.com/
高通机构

高通公司(英语:Qualcomm,NASDAQ:QCOM)是一个位于美国加州圣地亚哥的无线电通信技术研发公司,由加州大学圣地亚哥分校教授厄文·马克·雅克布和安德鲁·维特比创建,于1985年成立。两人此前曾共同创建Linkabit。 高通公司是全球3G、4G与5G技术研发的领先企业,目前已经向全球多家制造商提供技术使用授权,涉及了世界上所有电信设备和消费电子设备的品牌。根据iSuppli的统计数据,高通在2007年度一季度首次一举成为全球最大的无线半导体供应商,并在此后继续保持这一领导地位。其骁龙移动智能处理器是业界领先的全合一、全系列移动处理器,具有高性能、低功耗、逼真的多媒体和全面的连接性。目前公司的产品和业务正在变革医疗、汽车、物联网、智能家居、智慧城市等多个领域。

华为机构

华为成立于1987年,是全球领先的ICT(信息与通信)基础设施和智能终端提供商。华为的主要业务分布在无线、网络、软件、服务器、云计算、人工智能与大数据、安全、智能终端等领域,发布了5G端到端解决方案、智简网络、软件平台、面向行业的云解决方案、EI企业智能平台、新一代FusionServer V5服务器、HUAWEI Mate等系列智能手机、麒麟系列AI芯片等产品。目前华为拥有18万员工,36所联合创新中心,14所研究院/所/室,业务遍及170多个国家和地区。

http://www.huawei.com/cn
DeepMind机构

DeepMind是一家英国的人工智能公司。公司创建于2010年,最初名称是DeepMind科技(DeepMind Technologies Limited),在2014年被谷歌收购。在2010年由杰米斯·哈萨比斯,谢恩·列格和穆斯塔法·苏莱曼成立创业公司。继AlphaGo之后,Google DeepMind首席执行官杰米斯·哈萨比斯表示将研究用人工智能与人类玩其他游戏,例如即时战略游戏《星际争霸II》(StarCraft II)。深度AI如果能直接使用在其他各种不同领域,除了未来能玩不同的游戏外,例如自动驾驶、投资顾问、音乐评论、甚至司法判决等等目前需要人脑才能处理的工作,基本上也可以直接使用相同的神经网上去学而习得与人类相同的思考力。

网易机构

网易成立于1997年6月24日,是中国领先的互联网技术公司,为用户提供免费邮箱、游戏、搜索引擎服务,开设新闻、娱乐、体育等30多个内容频道,及博客、视频、论坛等互动交流,网聚人的力量。

https://www.163.com/
IBM机构

是美国一家跨国科技公司及咨询公司,总部位于纽约州阿蒙克市。IBM主要客户是政府和企业。IBM生产并销售计算机硬件及软件,并且为系统架构和网络托管提供咨询服务。截止2013年,IBM已在全球拥有12个研究实验室和大量的软件开发基地。IBM虽然是一家商业公司,但在材料、化学、物理等科学领域却也有很高的成就,利用这些学术研究为基础,发明很多产品。比较有名的IBM发明的产品包括硬盘、自动柜员机、通用产品代码、SQL、关系数据库管理系统、DRAM及沃森。

https://www.ibm.com/us-en/
相关技术
地平线机构

地平线作为嵌入式人工智能全球领导者,致力于提供高性能、低功耗、低成本、完整开放的嵌入式人工智能解决方案。面向智能驾驶、智能城市和智能商业等应用场景,为多种终端设备装上人工智能“大脑”,让它们具有从感知、交互、理解到决策的智能,让人们的生活更安全、更便捷、更美好。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

自动驾驶技术技术

从 20 世纪 80 年代首次成功演示以来(Dickmanns & Mysliwetz (1992); Dickmanns & Graefe (1988); Thorpe et al. (1988)),自动驾驶汽车领域已经取得了巨大进展。尽管有了这些进展,但在任意复杂环境中实现完全自动驾驶导航仍被认为还需要数十年的发展。原因有两个:首先,在复杂的动态环境中运行的自动驾驶系统需要人工智能归纳不可预测的情境,从而进行实时推论。第二,信息性决策需要准确的感知,目前大部分已有的计算机视觉系统有一定的错误率,这是自动驾驶导航所无法接受的。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

数据科学技术

数据科学,又称资料科学,是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。数据科学通过运用各种相关的数据来帮助非专业人士理解问题。

人脸识别技术

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

自动驾驶汽车技术

自动驾驶汽车,又称为无人驾驶汽车、电脑驾驶汽车或轮式移动机器人,是自动化载具的一种,具有传统汽车的运输能力。作为自动化载具,自动驾驶汽车不需要人为操作即能感测其环境及导航。

虚拟现实技术

虚拟现实,简称虚拟技术,也称虚拟环境,是利用电脑模拟产生一个三维空间的虚拟世界,提供用户关于视觉等感官的模拟,让用户感觉仿佛身历其境,可以及时、没有限制地观察三维空间内的事物。用户进行位置移动时,电脑可以立即进行复杂的运算,将精确的三维世界视频传回产生临场感。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

文本分析技术

文本分析是指对文本的表示及其特征项的选取;文本分析是文本挖掘、信息检索的一个基本问题,它把从文本中抽取出的特征词进行量化来表示文本信息。

操作系统技术

操作系统(英语:operating system,缩写作 OS)是管理计算机硬件与软件资源的计算机程序,同时也是计算机系统的内核与基石。操作系统需要处理如管理与配置内存、决定系统资源供需的优先次序、控制输入与输出设备、操作网络与管理文件系统等基本事务。操作系统也提供一个让用户与系统交互的操作界面。

语音识别技术

自动语音识别是一种将口头语音转换为实时可读文本的技术。自动语音识别也称为语音识别(Speech Recognition)或计算机语音识别(Computer Speech Recognition)。自动语音识别是一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处理理论、信息论、计算机科学等众多学科紧密相连。由于语音信号的多样性和复杂性,目前的语音识别系统只能在一定的限制条件下获得满意的性能,或者说只能应用于某些特定的场合。自动语音识别在人工智能领域占据着极其重要的位置。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

量子机器学习技术

量子机器学习是量子物理学和机器学习交叉的一个新兴的交叉学科研究领域。人们可以区分四种不同的方式来结合这两个父类学科。量子机器学习算法可以利用量子计算的优势来改进经典的机器学习方法,例如通过在量子计算机上开发昂贵的经典算法的有效实现。 另一方面,可以应用经典的机器学习方法来分析量子系统。 一般来说,可以考虑学习装置和所研究的系统都是完全量子的情况。

阿里巴巴机构

阿里巴巴网络技术有限公司(简称:阿里巴巴集团)是以曾担任英语教师的马云为首的18人于1999年在浙江杭州创立的公司。 阿里巴巴集团经营多项业务,另外也从关联公司的业务和服务中取得经营商业生态系统上的支援。业务和关联公司的业务包括:淘宝网、天猫、聚划算、全球速卖通、阿里巴巴国际交易市场、1688、阿里妈妈、阿里云、蚂蚁金服、菜鸟网络等。 2014年9月19日,阿里巴巴集团在纽约证券交易所正式挂牌上市,股票代码“BABA”,创始人和董事局主席为马云。 2018年7月19日,全球同步《财富》世界500强排行榜发布,阿里巴巴集团排名300位。2018年12月,阿里巴巴入围2018世界品牌500强。

https://www.alibabagroup.com/
爱奇艺机构

2010年4月22 日正式上线,爱奇艺推崇品质、青春、时尚的品牌内涵如今已深入人心,网罗了全球广大的年轻用户群体,积极推动产品、技术、内容、营销等全方位创新。企业愿景是做一家以科技创新为驱动的伟大娱乐公司。于2018年3月29日在纳斯达克上市。 爱奇艺已成功构建了包含电商、游戏、移动直播、漫画、阅读、电影票、短视频等业务在内、连接人与服务的娱乐内容生态,引领视频网站商业模式的多元化发展。

http://www.iqiyi.com/
百度机构

百度(纳斯达克:BIDU),全球最大的中文搜索引擎、最大的中文网站。1999年底,身在美国硅谷的李彦宏看到了中国互联网及中文搜索引擎服务的巨大发展潜力,抱着技术改变世界的梦想,他毅然辞掉硅谷的高薪工作,携搜索引擎专利技术,于 2000年1月1日在中关村创建了百度公司。 “百度”二字,来自于八百年前南宋词人辛弃疾的一句词:众里寻他千百度。这句话描述了词人对理想的执着追求。 百度拥有数万名研发工程师,这是中国乃至全球最为优秀的技术团队。这支队伍掌握着世界上最为先进的搜索引擎技术,使百度成为中国掌握世界尖端科学核心技术的中国高科技企业,也使中国成为美国、俄罗斯、和韩国之外,全球仅有的4个拥有搜索引擎核心技术的国家之一。

http://home.baidu.com/
三星机构

三星集团是韩国最大的跨国企业集团,同时也是上市企业全球500强,三星集团包括众多的国际下属企业,旗下子公司有:三星电子、三星物产、三星航空、三星人寿保险、雷诺三星汽车等,业务涉及电子、金融、机械、化学等众多领域。 三星集团成立于1938年,由李秉喆创办。三星集团是家族企业,李氏家族世袭,旗下各个三星产业均为家族产业,并由家族中的其他成员管理,集团领导人已传至 李氏第三代,李健熙为现任集团会长,其子李在镕任三星电子副会长。

Drive.ai机构

Drive.ai是一家总部位于加利福尼亚州山景城的美国科技公司,该公司使用人工智能为汽车制造自动驾驶系统。迄今为止,该公司已筹集了大约7700万美元的资金。

旷视科技机构

旷视科技是以人工智能技术为核心的物联网解决方案提供商,致力于用非凡科技为客户和社会创造最大价值。基于自主原创的AI技术体系,旷视赋能手机、摄像头、机器人等感知设备,让“机器看懂世界”,并通过软硬结合的解决方案构建个人IoT、公共IoT、商业IoT三大物联网络,助力行业实现降本增效,提升客户商业效益和人们生活品质。旷视科技是世界最早一批用深度学习方法实现人脸识别规模化商用的人工智能企业之一,旗下拥有全球领先的人脸识别开放平台Face++和第三方人脸身份验证平台FaceID,并已在多个垂直领域推出了包括人脸识别支付、人脸识别解锁、全帧智能抓拍机在内的多个具有开创性意义的AI产品。 旷视科技在行业的领先地位源于对核心技术持之以恒的创新。作为中国人工智能原创技术企业代表之一,旷视拥有国内外在申及授权专利900余件,并代表行业领先技术提供方参与了19项人工智能国家及行业标准制定。旷视在各项国际人工智能顶级竞赛中多次击败Google、Facebook、Microsoft等知名企业,揽获25项世界技术评测第一,在ECCV2018的COCO、Mapillary竞赛中,旷视独揽4冠,刷新了中国AI技术的世界新高度。旷视科技取得的成绩获得了诸多认可。2014年,旷视被认定为国家级高新技术企业;2015年,旷视被认定为中关村高新技术企业;2016年11月,旷视入选中关村前沿科技企业;2017年3月,旷视被科技部评为“独角兽”企业,并位列人工智能企业首位;2017年5月,旷视核心人脸识别技术被美国著名科技评论杂志《麻省理工科技评论》评定为2017全球十大突破技术,同时旷视入榜“全球最聪明公司”排名第11位;2017年7月,旷视受邀在国家政府半年经济会议中向李克强总理做企业创新汇报;2017年12月,旷视产业级的人工智能技术入选世界互联网领先科技成果;2018年,旷视入选国家知识产权示范企业,获批全国博士后科研工作站一级站点,并承担国家重点研发计划“变革性技术关键科学问题”重点专项核心课题。

Nuro机构

Nuro成立于2016年,是由前谷歌自动驾驶项目的两位核心成员朱佳俊和Dave Ferguson共同创立的机器人技术公司。创立Nuro之前,朱佳俊和Dave在谷歌自动驾驶汽车团队一起共事了6年。 Nuro团队还聚集了众多来自谷歌、Waymo、苹果、特斯拉、通用汽车、优步、Twitter等科技公司的科研、工程和产品人才。自动驾驶团队包含了2007美国国防部自动驾驶汽车比赛冠军队成员,三位来自谷歌的首席工程师分别负责了三代谷歌自动驾驶汽车的软硬件核心技术研发,以及苹果自动驾驶汽车的资深部门负责人。机器人算法团队包含了很多来自全世界一流名校的毕业生,包括卡内基梅隆、斯坦福、加州伯克利、麻省理工、普林斯顿、加州理工、哈佛、牛津、北大、复旦等。人工智能团队包含了ImageNet的往届冠军和Deepmind的前成员。

nuro.ai/
相关技术
京东机构

京东(股票代码:JD),中国自营式电商企业,创始人刘强东担任京东集团董事局主席兼首席执行官。旗下设有京东商城、京东金融、拍拍网、京东智能、O2O及海外事业部等。2013年正式获得虚拟运营商牌照。2014年5月在美国纳斯达克证券交易所正式挂牌上市。 2016年6月与沃尔玛达成深度战略合作,1号店并入京东。

腾讯机构

腾讯科技股份有限公司(港交所:700)是中国规模最大的互联网公司,1998年11月由马化腾、张志东、陈一丹、许晨晔、曾李青5位创始人共同创立,总部位于深圳南山区腾讯大厦。腾讯由即时通讯软件起家,业务拓展至社交、娱乐、金融、资讯、工具和平台等不同领域。目前,腾讯拥有中国国内使用人数最多的社交软件腾讯QQ和微信,以及中国国内最大的网络游戏社区腾讯游戏。在电子书领域 ,旗下有阅文集团,运营有QQ读书和微信读书。

http://www.tencent.com/
Graphcore机构

Graphcore's IPU accelerators and Poplar software together make the fastest and most flexible platform for current and future machine intelligence applications, lowering the cost of AI in the cloud and data center, improving performance and efficiency by between 10x to 100x. Graphcore systems excel at both training and inference. The highly parallel computational resources together with graph software tools and libraries, allows researchers to explore machine intelligence across a much broader front than current solutions. This technology lets recent success in deep learning evolve rapidly towards useful, general artificial intelligence.

机器之心机构

机器之心,成立于2014年,是国内最具影响力、最专业、唯一用于国际品牌的人工智能信息服务与产业服务平台。目前机器之心已经建立起涵盖媒体、数据、活动、研究及咨询、线下物理空间于一体的业务体系,为各类人工智能从业者提供综合信息服务和产业服务。

小米机构

小米是中国一家专注于智能硬件、智能家居以及软件开发的企业,于2010年4月6日成立,总部位于中国北京,截至2018年3月31日,员工人数近1.45万。 2010年8月及12月,小米发布了基于安卓系统深度定制的第三方固件MIUI及首款移动应用米聊。2011年8月16日,小米正式推出了其第一款硬件产品——小米手机(一代),开创了以互联网线上抢购高配置、低售价的智能手机销售模式。 通过旗下生态链品牌MIJIA(米家),小米的产品线从智能手机及耳机、移动电源等手机周边产品和音箱、手环等相关移动智能硬件,扩展到智能电视、机顶盒、路由器、空气净化器、电饭煲等家居消费产品。截至2018年3月底,小米已进入全球74个国家和地区的市场,并在其中15个市场智能手机出货量名列前五。 2012年,小米全资买入北京多看科技有限公司,进入电子书阅读领域。多看阅读是旗下网站,并有相应的App。2018年,业界传闻小米有计划生产电子阅读器。 2018年5月3日,小米正式向香港交易所提交IPO申请[6],于2018年7月9日以同股不同权的方式挂牌上市,并计划于7月23日纳入恒生综合指数。 2018年11月19日,美图公司与小米集团宣布达成战略合作伙伴关系,合作期限30年。

机器人过程自动化技术

机器人过程自动化(RoboticProcessAutomation,简称RPA)是基于软件机器人或人工智能(Artificial Intelligence,简称AI)概念的一种新兴业务过程自动化技术。 机器人过程自动化是一种技术,它允许任何人配置计算机软件,或者“机器人”模拟和集成数字系统中人的交互动作,以执行业务流程。 RPA机器人像人类一样利用用户界面来捕获数据和操作应用程序。 它们解释、触发响应并与其他系统通信,以便执行各种各样的重复任务。 实质上:一个RPA软件机器人从不睡觉,犯零错误,它的成本比一个雇员低得多。

5G技术

第五代移动通信系统(5th generation mobile networks),简称5G,是4G系统后的延伸。美国时间2018年6月13日,圣地牙哥3GPP会议订下第一个国际5G标准。由于物理波段的限制,5G 的网络也将会与其他通信技术并用,包含长距离的其他传统电信波段。

量子计算技术

量子计算结合了过去半个世纪以来两个最大的技术变革:信息技术和量子力学。如果我们使用量子力学的规则替换二进制逻辑来计算,某些难以攻克的计算任务将得到解决。追求通用量子计算机的一个重要目标是确定当前经典计算机无法承载的最小复杂度的计算任务。该交叉点被称为「量子霸权」边界,是在通向更强大和有用的计算技术的关键一步。

机器视觉技术

机器视觉(Machine Vision,MV)是一种为自动化检测、过程控制和机器人导航等应用提供基于图像的自动检测和分析的技术和方法,通常用于工业领域。

暂无评论
暂无评论~