Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

戴一鸣 张倩参与

对新手友好的 PyTorch 深度概率推断工具 Brancher,掌握 ML 和 Python 基础即可上手

今天,来自荷兰拉德堡德大学(Radboud University)团队的开发者在 reddit 上发布了一个 PyTorch 深度概率推断工具——Brancher,旨在使贝叶斯统计和深度学习之间的集成变得简单而直观。与其他概率推断工具相比,Brancher 对新手更加友好,只具备机器学习和 Python 基础的人也可以上手使用。

项目地址:https://brancher.org/

特点

Brancher 官网显示,这一工具具有灵活(flexible)、集成(integrated)、直观(intuitive)的特点。

  • 灵活:易于扩展建模带有 GPU 加速的 PyTorch 后端的框架

  • 集成:易于使用带有 Pandas 和 Seaborn 支持的当前工具

  • 直观:易于利用数学类语法学习符号推理

与其他概率建模工具有什么区别?

项目的主要开发者 LucaAmbrogioni 表示,与 Brancher 紧密相关的两个模块是 Pyro 和 PyMC3。Brancher 的目标受众比 Pyro 更广泛,包括那些只接受过机器学习和 Python 编程基本培训的人。界面设计得尽可能接近数学。缺点是 Brancher 不如 Pyro 灵活。

Brancher 的前端与 PyMC3 非常相似。与 PyMC 的主要区别在于,Brancher 构建在深度学习库 PyTorch 的顶部。每一个在 PyTorch 中实现的深度学习工具都可以用来在 Brancher 中构建深度概率模型。此外,PyMC 主要利用采样,而 Brancher 则基于变分推理。

安装

用户需要首先安装 PyTorch,然后使用 pip 命令行:

pip install *brancher*

或从 GitHub 地址克隆代码,Github 地址:https://github.com/AI-DI/Brancher

教程

Google Colab 上有相关教程,包括

  • Brancher 入门

  • 使用 Brancher 进行时间序列分析

  • 使用 Brancher 进行贝叶斯统计分析

Brancher 入门

Brancher 是一个以用户为中心的概率微分程序包。Brancher 希望能够为初学者提供友好的服务,在保证计算运行效率和灵活性的前提下减少多余的代码。Brancher 以 PyTorch 为核心构建。

安装 Brancher 成功后,首先需要用户导入相关包:

import torch
import matplotlib.pyplot as plt

from brancher.variables import ProbabilisticModel
from brancher.standard_variables import NormalVariable, LogNormalVariable
from brancher import inference
import brancher.functions as BF

Brancher 是一个对象导向的工具包。因此内部的所有对象都是一个类,可以用来抽象化为概率计算程序。建立所有 Brancher 程序的基础组件是 RandomVariable 类。通过微分方程连接随机变量,可以建立概率模型。

例如,可以建立这样一个模型,其中一个正则随机变量的均值是由另一个正则随机变量的正弦函数值决定的。Brancher 可以让你像在学术论文里那样使用符号定义模型。

创建变量:

nu = LogNormalVariable(loc=0., scale=1., name="nu")
mu = NormalVariable(loc=0., scale=10., name="mu")
x = NormalVariable(loc=BF.sin(mu), scale=nu, name="x")

使用定义好的变量创建一个概率模型:

model = ProbabilisticModel([x, mu, nu])

打印模型的内部组成:

model.model_summary

打印结果:

正如我们所预计的那样,变量 x 是 mu 和 nu 的计算结果。但是,列表中也出现了 mu_mu 或 mu_sigma 这样没有提前明确定义的变量。这些确定变量(Deterministic Variables)代表的是概率分布参数的固定值。确定变量是 Brancher 中的特例,和随机变量相似,但值是确定的。我们不需要定义他们,只需要在计算时输入数字即可。

由于现在没有输入数据,因此 Observed 一栏为 False,现在我们输入一些样本数据,看看概率模型如何工作。

sample = model.get_sample(10)
sample

如果只需要单个变量的结果:

x_sample = x.get_sample(10)
x_sample

我们还可以做到通过输入某些变量的值后进行采样,如设定 mu 变量为 100 时,查看样本结果:

in_sample = model.get_sample(10, input_values={mu: 100.})
in_sample

为了对某些已知的值进行上采样,我们需要定义一些观测值,并使用变分推断的方法获得分布。我们可以首先对 mu 和 nu 变量定义一些真实值,并生产一些观测结果:

nu_real = 0.5
mu_real = -1.
data = x.get_sample(number_samples=100, input_values={mu: mu_real, nu: nu_real})

现在我们可以告诉 Brancher 变量 x 是从生成数据的值中观察到的。

x.observe(data)
model.model_summary

这时可以看到变量 x 变为 observed。

如果你想采样下游 x 的变量 mu 和 nu,你需要执行近似贝叶斯推理。在 Brancher 中,可以通过为所有想要采样的变量定义一个变分分布来实现这一点。变分模型本身是一个概率模型,其构造方法与原概率模型完全相同。

指定此分布的最简单方法是使用与原始模型中相同的分布:

Qnu = LogNormalVariable(0., 1., "nu", learnable=True)
Qmu = NormalVariable(0., 1., "mu", learnable=True)
model.set_posterior_model(ProbabilisticModel([Qmu, Qnu]))

现在我们需要使用一些随机优化来学习变分近似的参数。这种技术被称为随机变分推理,该技术非常强大,因为它可以将贝叶斯推理很好地融入到深度学习框架中(实际上 brancher 的目的是与深度神经网络一起作为构建复杂概率模型的模块)。

现在让 Brancher 知道,变量分布的参数可以使用「learnable」flag 学习。接下来学习这些参数:

inference.perform_inference(model,
                            number_iterations=500,
                            number_samples=50,
                            optimizer="Adam",
                            lr=0.01)
loss_list = model.diagnostics["loss curve"]

现在把损失函数画出来,以确保一切顺利。

plt.plot(loss_list)

现在从后验取一些样本:

post_sample = model.get_posterior_sample(1000)
post_sample.describe()

与真值一起绘制后验分布:

g = plt.hist(post_sample["mu"], 50)
plt.axvline(x=mu_real, color="k", lw=2)
[Image: image.png]

可以用 Brancher 绘制的函数可视化后验分布。这个函数依赖于 Seaborn,Seaborn 是一个非常方便的可视化库,与 panda 结合使用非常好。

from brancher.visualizations import plot_posterior
plot_posterior(model, variables=["mu", "nu", "x"])

更多教程请参考:

  • 使用 Brancher 进行时间序列分析,地址:https://colab.research.google.com/drive/1WuVUqr9pahhO4E4ema4vjDxxH-aMvMqb

  • 使用 Brancher 进行贝叶斯统计分析,地址:https://colab.research.google.com/drive/1L3kp7V48mRQYQDimn16OX1l0c0s20JFd

案例

作者提供了许多使用 Brancher 的案例,包括:

  • 自动回归建模

  • 变分自动编码器

  • 多元回归

自动回归建模完整代码:

import matplotlib.pyplot as plt
import numpy as np

from brancher.variables import RootVariable, RandomVariable, ProbabilisticModel
from brancher.standard_variables import NormalVariable, LogNormalVariable, BetaVariable
from brancher import inference
import brancher.functions as BF

# Probabilistic model #
T = 200

nu = LogNormalVariable(0.3, 1., 'nu')
x0 = NormalVariable(0., 1., 'x0')
b = BetaVariable(0.5, 1.5, 'b')

x = [x0]
names = ["x0"]
for t in range(1, T):
names.append("x{}".format(t))
x.append(NormalVariable(b*x[t-1], nu, names[t]))
AR_model = ProbabilisticModel(x)

# Generate data #
data = AR_model._get_sample(number_samples=1)
time_series = [float(data[xt].cpu().detach().numpy()) for xt in x]
true_b = data[b].cpu().detach().numpy()
true_nu = data[nu].cpu().detach().numpy()
print("The true coefficient is: {}".format(float(true_b)))

# Observe data #
[xt.observe(data[xt][:, 0, :]) for xt in x]

# Variational distribution #
Qnu = LogNormalVariable(0.5, 1., "nu", learnable=True)
Qb = BetaVariable(0.5, 0.5, "b", learnable=True)
variational_posterior = ProbabilisticModel([Qb, Qnu])
AR_model.set_posterior_model(variational_posterior)

# Inference #
inference.perform_inference(AR_model,
number_iterations=200,
number_samples=300,
optimizer='Adam',
lr=0.05)
loss_list = AR_model.diagnostics["loss curve"]


# Statistics
posterior_samples = AR_model._get_posterior_sample(2000)
nu_posterior_samples = posterior_samples[nu].cpu().detach().numpy().flatten()
b_posterior_samples = posterior_samples[b].cpu().detach().numpy().flatten()
b_mean = np.mean(b_posterior_samples)
b_sd = np.sqrt(np.var(b_posterior_samples))
print("The estimated coefficient is: {} +- {}".format(b_mean, b_sd))

# Two subplots, unpack the axes array immediately
f, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4)
ax1.plot(time_series)
ax1.set_title("Time series")
ax2.plot(np.array(loss_list))
ax2.set_title("Convergence")
ax2.set_xlabel("Iteration")
ax3.hist(b_posterior_samples, 25)
ax3.axvline(x=true_b, lw=2, c="r")
ax3.set_title("Posterior samples (b)")
ax3.set_xlim(0,1)
ax4.hist(nu_posterior_samples, 25)
ax4.axvline(x=true_nu, lw=2, c="r")
ax4.set_title("Posterior samples (nu)")
plt.show()

从左到右依次为「Time Series」、「Convergence」、「Posterior Samples (b)」、「Posterior Samples (n)」

更多案例请参考:

  • 使用变分自动编码器学习识别 MNIST 手写数字:https://colab.research.google.com/drive/1EvQS1eWWYdVlhuoP-y1RXED9a2CNu3XQ

  • 多元回归分析:https://colab.research.google.com/drive/1ZyhidyCGEH_epDRt29HzvR65V8EN0kpX

工程PyTorch符号概率推理Brancher
2
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

随机优化技术

随机优化(SO)方法是生成和使用随机变量的优化方法。 对于随机问题,随机变量出现在优化问题本身的表述中,其涉及随机目标函数或随机约束。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

变分推断技术

see Variational Bayesian methods (approximation)

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

概率分布技术

概率分布(probability distribution)或简称分布,是概率论的一个概念。广义地,它指称随机变量的概率性质--当我们说概率空间中的两个随机变量具有同样的分布(或同分布)时,我们是无法用概率来区别它们的。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

上采样技术

在数字信号处理中,上采样、扩展和内插是与多速率数字信号处理系统中的重采样过程相关的术语。 上采样可以与扩展同义,也可以描述整个扩展和过滤(插值)过程。

回归分析技术

回归分析是一种用于估计变量之间的关系(当一个自变量变化而其它变量固定时,因变量会如何变化)的统计过程,在预测任务中有广泛的应用。回归分析模型有不同的种类,其中最流行的是线性回归和 逻辑回归(Logistic Regression)。另外还有多变量回归、泊松回归、逐步回归、脊回归(Ridge Regression)、套索回归(Lasso Regression)和多项式回归等等。随机梯度下降(SGD)就是一种起源于回归分析的常用方法,可用于控制复杂度。

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

推荐文章
暂无评论
暂无评论~