蒋宝尚作者

用Numpy搭建神经网络第二期:梯度下降法的实现

小伙伴们大家好呀~~用Numpy搭建神经网络,我们已经来到第二期了。第一期文摘菌教大家如何用Numpy搭建一个简单的神经网络,完成了前馈部分。

这一期,为大家带来梯度下降相关的知识点,和上一期一样,依然用Numpy实现梯度下降。在代码开始之前,先来普及一下梯度下降的知识点吧。

梯度下降:迭代求解模型参数值

第一期文章中提到过,最简单的神经网络包含三个要素,输入层,隐藏层以及输出层。关于其工作机理其完全可以类比成一个元函数:Y=W*X+b。即输入数据X,得到输出Y。

如何评估一个函数的好坏,专业一点就是拟合度怎么样?最简单的方法是衡量真实值和输出值之间的差距,两者的差距约小代表函数的表达能力越强。

这个差距的衡量也叫损失函数。显然,损失函数取值越小,原函数表达能力越强。

那么参数取何值时函数有最小值?一般求导能够得到局部最小值(在极值点处取)。而梯度下降就是求函数有最小值的参数的一种方法。

梯度下降数学表达式

比如对于线性回归,假设函数表示为hθ(x1,x2…xn)=θ01x1+..+θnxn,其中wi(i=0,1,2...n)为模型参数,xi(i=0,1,2...n)为每个样本的n个特征值。这个表示可以简化,我们增加一个特征x0=1,这样h(xo,x1,.…xn)=θ0x01x1+..+θnxn。同样是线性回归,对应于上面的假设函数,损失函数为(此处在损失函数之前加上1/2m,主要是为了修正SSE让计算公式结果更加美观,实际上损失函数取MSE或SSE均可,二者对于一个给定样本而言只相差一个固定数值):

算法相关参数初始化:主要是初始化θ0,θ1..,θn,我们比较倾向于将所有的初始化为0,将步长初始化为1。在调优的时候再进行优化。

对θi的梯度表达公式如下:

用步长(学习率)乘以损失函数的梯度,得到当前位置下降的距离,即:

梯度下降法的矩阵方式描述

对应上面的线性函数,其矩阵表达式为:

损失函数表达式为:

其中Y为样本的输出向量。

梯度表达公式为:

还是用线性回归的例子来描述具体的算法过程。损失函数对于向量的偏导数计算如下:

迭代:

两个矩阵求导公式为:

用Python实现梯度下降

import pandas as pdimport numpy as np

导入两个必要的包。

def regularize(xMat):
     inMat=xMat. copy()
     inMeans=np. mean(inMat, axis=0)
     invar=np. std(inMat, axis=0)
     inMat=(inMat-inMeans)/invar 
     return inMat

定义标准化函数,不让过大或者过小的数值影响求解。

定义梯度下降函数:

def BGD_LR(data alpha=0.001, maxcycles=500):   
    xMat=np. mat(dataset)    
    yMat=np. mat(dataset).T    
    xMat=regularize(xMat)    
    m,n=xMat.shape    
    weights=np. zeros((n,1))    
    for i in range(maxcycles):        
        grad=xMat.T*(xMat * weights-yMat)/m        
        weights=weights -alpha* grad        
        return weights

其中,dataset代表输入的数据,alpha是学习率,maxcycles是最大的迭代次数。

即返回的权重就是说求值。np.zeros 是初始化函数。grad的求取是根据梯度下降的矩阵求解公式。

本文参考B站博主菊安酱的机器学习。感兴趣的同学可以打开链接观看视频哟~

https://www.bilibili.com/video/av35390140

好了,梯度下降这个小知识点就讲解完了,下一期,我们将第一期与第二期的知识点结合,用手写数字的数据完成一次神经网络的训练。

大数据文摘
大数据文摘

秉承“普及数据思维,传播数据文化,助⼒产业发展”的企业⽂化,我们专注于数据领域的资讯、案例、技术,形成了“媒体+教育+⼈才服务”的良性⽣态,致⼒于打造精准数据科学社区。

工程梯度下降神经网络Numpy
暂无评论
暂无评论~