参与路雪 张倩

推理速度提升5.1倍,参数减少88%:谷歌提出新型CNN网络EfficientNet(附代码)

谷歌提出了一项新型模型缩放方法:利用复合系数统一缩放模型的所有维度,该方法极大地提升了模型的准确率和效率。谷歌研究人员基于该模型缩放方法,提出了一种新型 CNN 网络 EfficientNet,该网络具备极高的参数效率和速度。目前,该模型的代码已开源。

卷积神经网络(CNN)通常以固定成本开发,然后再按比例放大,从而在获得更多资源时可以达到更高的准确率。例如,ResNet 可以通过增加网络层数,从 ResNet-18 扩展到 ResNet-200。近期 GPipe 将基线 CNN 扩展了 4 倍,从而在 ImageNet 数据集上达到了 84.3% 的 top-1 准确率。模型缩放的通常做法是任意增加 CNN 的深度或宽度,或者使用更大的输入图像分辨率进行训练和评估。尽管这些方法确实可以改进准确率,但它们通常需要大量手动调参,且通常获得的是次优性能。那么,我们是否可以寻找更好的 CNN 扩展方法,来获得更高的准确率和效率呢?

谷歌研究人员在一篇 ICML 2019 论文《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》中,提出了一种新型模型缩放方法,该方法使用一种简单但高效的复合系数(compound coefficient)以更加结构化的方式扩展 CNN。与任意扩展网络维度(如宽度、深度、分辨率)的传统方法不同,该新方法使用固定的一组缩放系数扩展每个维度。受益于该方法和 AutoML 的最新进展,谷歌开发出了一系列模型——EfficientNets,该模型的准确率超越了当前最优模型,且效率是后者的 10 倍(模型更小,速度更快)。

  • 论文链接:https://arxiv.org/pdf/1905.11946.pdf

复合模型缩放:扩展 CNN 的更好方法

为了理解网络缩放的效果,谷歌研究人员系统地研究了缩放模型不同维度的影响。虽然缩放单个维度可以改善模型性能,但研究人员发现平衡网络的所有维度(宽度、深度和图像分辨率)和可用资源才能最优地提升整体性能。

该复合缩放方法的第一步就是执行网格搜索,寻找固定资源限制下基线模型不同缩放维度之间的关系。这决定了每个维度的恰当缩放系数。第二步是应用这些系数,将基线网络扩展到目标模型大小或目标计算成本。

不同缩放方法对比。传统缩放方法 (b)-(d) 任意缩放模型的单个维度,而谷歌提出的新型复合缩放方法则不同,它扩展模型的所有维度。

相比于传统的模型缩放方法,该复合缩放方法可持续改善模型的准确率和效率,如 MobileNet 的 ImageNet 准确率提升了 1.4%,ResNet 的准确率提升了 0.7%。

EfficientNet 架构

模型缩放的效果严重依赖基线模型。因此,为了进一步提升性能,谷歌研究人员使用 AutoML MNAS 框架执行神经架构搜索,从而开发出一种新型基线模型,该模型可以优化准确率和效率。

该基线模型使用 mobile inverted bottleneck convolution(MBConv),类似于 MobileNetV2 和 MnasNet,但是由于 FLOP 预算增加,该模型较大。于是,研究人员继续缩放该基线模型,得到一组模型——EfficientNets。

基线模型 EfficientNet-B0 的架构简单、干净,这使得它易于扩展和泛化。

EfficientNet 性能

研究人员在 ImageNet 数据集上对比了 EfficientNets 和已有 CNN 模型。EfficientNet 模型要比已有 CNN 模型准确率更高、效率更高,其参数量和 FLOPS 都下降了一个数量级。例如,在高准确率的模式中,EfficientNet-B7 在 ImageNet 上获得了当前最优的 84.4% top-1 / 97.1% top-5 准确率,CPU 推断速度是 Gpipe 的 6.1 倍,而后者的大小是 EfficientNet-B7 的 8.4 倍。与现在广泛使用的 ResNet-50 相比,EfficientNet-B4 使用类似的 FLOPS 取得的 top-1 准确率比 ResNet-50 高出 6.3%(ResNet-50 76.3%,EfficientNet-B4 82.6%)。

模型大小 vs. 准确率。

EfficientNet-B0 是通过 AutoML MNAS 开发出的基线模型,Efficient-B1 到 B7 是扩展基线模型后得到的网络。EfficientNet 显著优于其他 CNN。具体来说,EfficientNet-B7 取得了新的 SOTA 结果:84.4% top-1 / 97.1% top-5 准确率,且其大小远远小于之前的最优 CNN 模型 GPipe(后者的模型大小是 EfficientNet-B7 的 8.4 倍),速度是 GPipe 的 6.1 倍。EfficientNet-B1 的参数量远远小于 ResNet-152,但速度是后者的 5.7 倍。

EfficientNet 在 ImageNet 上的性能。

推断延迟对比。

尽管 EfficientNets 在 ImageNet 上性能优异,但要想更加有用,它们应当具备迁移到其他数据集的能力。谷歌研究人员在 8 个常用迁移学习数据集上评估了 EfficientNets,结果表明 EfficientNets 在其中的 5 个数据集上达到了当前最优的准确率,且参数量大大减少,这表明 EfficientNets 具备良好的迁移能力。

EfficientNets 能够显著提升模型效率,谷歌研究人员希望 EfficientNets 能够作为未来计算机视觉任务的新基础。因此,研究人员开源了 EfficientNet 模型。

  • EfficientNet 源代码和 TPU 训练脚本参见:https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet

参考链接:https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

理论Google AI
41
相关数据
卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

迁移学习技术

迁移学习是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题。 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴。

推荐文章
Face++・视觉算法工程师
跟 shufflenetV2 对比 怎么样呢?