Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

丁楠雅校对张玲翻译

教你使用简单神经网络和LSTM进行时间序列预测(附代码)

作者基于波动性标准普尔500数据集和Keras深度学习网络框架,利用python代码演示RNN和LSTM RNN的构建过程,便于你快速搭建时间序列的预测模型。

图片来源:Pixabay本文的目的是演示人工神经网络(Artificial Neural Network ,ANN)和长短期记忆循环神经网络(Long Short-Term Memory Recurrent Neural Network ,LSTM RNN)工作过程,使您能够在现实生活中使用它们,并对时间序列数据建立最简单的ANN和LSTM循环神经网络。

人工神经网络(Artificial Neural Network ,ANN)

https://en.wikipedia.org/wiki/Artificial_neural_network

长短期记忆循环神经网络(Long Short-Term Memory Recurrent Neural Network ,LSTM RNN)

https://en.wikipedia.org/wiki/Long_short-term_memory

数据

CBOE(Chicago Board Options Exchange,芝加哥期权交易所)波动性指数是用来衡量标准普尔500指数期权的一种常用隐含波动率,以其代号VIX(Volatility Index,也称“恐惧指数”)而闻名。

CBOE(Chicago Board Options Exchange,芝加哥期权交易所)波动性指数

https://en.wikipedia.org/wiki/VIX

芝加哥期权交易所CBOE实时计算出VIX指数后,将其推出。

芝加哥期权交易所

https://en.wikipedia.org/wiki/Chicago_Board_Options_Exchange

可以从这里(https://ca.finance.yahoo.com/quote/%5Evix/history?ltr=1)下载波动性标准普尔500数据集,时间范围是:2011年2月11日至2019年2月11日。我的目标是采用ANN和LSTM来预测波动性标准普尔500时间序列。

首先,我们需要导入以下库:

import pandas as pd

import numpy as np

%matplotlib inline

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import r2_score

from keras.models import Sequential

from keras.layers import Dense

from keras.callbacks import EarlyStopping

from keras.optimizers import Adam

from keras.layers import LSTM

并将数据加载到Pandas 的dataframe中。

df = pd.read_csv("vix_2011_2019.csv")

我们可以快速浏览前几行。

print(df.head())

删除不需要的列,然后将“日期”列转换为时间数据类型,并将“日期”列设置为索引。

df.drop(['Open', 'High', 'Low', 'Close', 'Volume'], axis=1, inplace=True)

df['Date'] = pd.to_datetime(df['Date'])

df = df.set_index(['Date'], drop=True)

df.head(10)

接下来,我们绘制一个时间序列线图。

plt.figure(figsize=(10, 6))

df['Adj Close'].plot();

可以看出,“Adj close”数据相当不稳定,既没有上升趋势,也没有下降趋势。

按日期“2018–01–01”将数据拆分为训练集和测试集,即在此日期之前的数据是训练数据,此之后的数据是测试数据,我们再次将其可视化。

split_date = pd.Timestamp('2018-01-01')

df =  df['Adj Close']

train = df.loc[:split_date]

test = df.loc[split_date:]

plt.figure(figsize=(10, 6))

ax = train.plot()

test.plot(ax=ax)

plt.legend(['train', 'test']);

我们将训练和测试数据缩放为[-1,1]。

scaler = MinMaxScaler(feature_range=(-1, 1))

train_sc = scaler.fit_transform(train)

test_sc = scaler.transform(test)

获取训练和测试数据。

X_train = train_sc[:-1]

y_train = train_sc[1:]

X_test = test_sc[:-1]

y_test = test_sc[1:]

用于时间序列预测的简单人工神经网络

我们创建一个序列模型。

通过.add()方法添加层。

将“input_dim”参数传递到第一层。

激活函数线性整流函数Relu(Rectified Linear Unit,也称校正线性单位)。

通过compile方法完成学习过程的配置。

损失函数是mean_squared_error,优化器是Adam。

当监测到loss停止改进时,结束训练。

patience =2,表示经过数个周期结果依旧没有改进,此时可以结束训练。

人工神经网络的训练时间为100个周期,每次用1个样本进行训练。

nn_model = Sequential()

nn_model.add(Dense(12, input_dim=1, activation='relu'))

nn_model.add(Dense(1))

nn_model.compile(loss='mean_squared_error', optimizer='adam')

early_stop = EarlyStopping(monitor='loss', patience=2, verbose=1)

history = nn_model.fit(X_train, y_train, epochs=100, batch_size=1, verbose=1, callbacks=[early_stop], shuffle=False)

我不会把整个输出结果打印出来,它早在第19个周期就停了下来。

y_pred_test_nn = nn_model.predict(X_test)

y_train_pred_nn = nn_model.predict(X_train)

print("The R2 score on the Train set is:\t{:0.3f}".format(r2_score(y_train, y_train_pred_nn)))

print("The R2 score on the Test set is:\t{:0.3f}".format(r2_score(y_test, y_pred_test_nn)))

LSTM

LSTM网络的构建和模型编译和人工神经网络相似。

LSTM有一个可见层,它有1个输入。

隐藏层有7个LSTM神经元

输出层进行单值预测。

LSTM神经元使用Relu函数进行激活。

LSTM的训练时间为100个周期,每次用1个样本进行训练。

lstm_model = Sequential()

lstm_model.add(LSTM(7, input_shape=(1, X_train_lmse.shape[1]), activation='relu', kernel_initializer='lecun_uniform', return_sequences=False))

lstm_model.add(Dense(1))

lstm_model.compile(loss='mean_squared_error', optimizer='adam')

early_stop = EarlyStopping(monitor='loss', patience=2, verbose=1)

history_lstm_model = lstm_model.fit(X_train_lmse, y_train, epochs=100, batch_size=1, verbose=1, shuffle=False, callbacks=[early_stop])

训练早在第10个周期就停了下来。

y_pred_test_lstm = lstm_model.predict(X_test_lmse)

y_train_pred_lstm = lstm_model.predict(X_train_lmse)

print("The R2 score on the Train set is:\t{:0.3f}".format(r2_score(y_train, y_train_pred_lstm)))

print("The R2 score on the Test set is:\t{:0.3f}".format(r2_score(y_test, y_pred_test_lstm)))

训练和测试R^2均优于人工神经网络模型。

比较模型

我们比较了两种模型的测试MSE

nn_test_mse = nn_model.evaluate(X_test, y_test, batch_size=1)

lstm_test_mse = lstm_model.evaluate(X_test_lmse, y_test, batch_size=1)

print('NN: %f'%nn_test_mse)

print('LSTM: %f'%lstm_test_mse)

进行预测

nn_y_pred_test = nn_model.predict(X_test)

lstm_y_pred_test = lstm_model.predict(X_test_lmse)

plt.figure(figsize=(10, 6))

plt.plot(y_test, label='True')

plt.plot(y_pred_test_nn, label='NN')

plt.title("NN's Prediction")

plt.xlabel('Observation')

plt.ylabel('Adj Close Scaled')

plt.legend()

plt.show();

plt.figure(figsize=(10, 6))

plt.plot(y_test, label='True')

plt.plot(y_pred_test_lstm, label='LSTM')

plt.title("LSTM's Prediction")

plt.xlabel('Observation')

plt.ylabel('Adj Close scaled')

plt.legend()

plt.show();

就是这样!在这篇文章中,我们发现了如何采用python语言基于Keras深度学习网络框架,开发用于时间序列预测的人工神经网络和LSTM循环神经网络,以及如何利用它们更好地预测时间序列数据。

Jupyter笔记本可以在Github上找到。星期一快乐!

原文标题:

An Introduction on Time Series Forecasting with Simple Neural Networks & LSTM

原文链接:

https://www.kdnuggets.com/2019/04/introduction-time-series-forecasting-simple-neural-networks-lstm.html

THU数据派
THU数据派

THU数据派"基于清华,放眼世界",以扎实的理工功底闯荡“数据江湖”。发布全球大数据资讯,定期组织线下活动,分享前沿产业动态。了解清华大数据,敬请关注姐妹号“数据派THU”。

工程神经网络LSTM时间序列预测
9
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

激活函数技术

在 计算网络中, 一个节点的激活函数定义了该节点在给定的输入或输入的集合下的输出。标准的计算机芯片电路可以看作是根据输入得到"开"(1)或"关"(0)输出的数字网络激活函数。这与神经网络中的线性感知机的行为类似。 一种函数(例如 ReLU 或 S 型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

线性整流函数技术

线性整流函数(Rectified Linear Unit, ReLU),又称修正线性单元, 是一种人工神经网络中常用的激活函数(activation function),通常指代以斜坡函数及其变种为代表的非线性函数。比较常用的线性整流函数有斜坡函数f(x)=max(0, x),以及带泄露整流函数 (Leaky ReLU),其中x为神经元(Neuron)的输入。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

时间序列预测技术

时间序列预测法其实是一种回归预测方法,属于定量预测,其基本原理是;一方面承认事物发展的延续性,运用过去时间序列的数据进行统计分析,推测出事物的发展趋势;另一方面充分考虑到偶然因素影响而产生的随机性,为了消除随机波动的影响,利用历史数据进行统计分析,并对数据进行适当处理,进行趋势预测。

优化器技术

优化器基类提供了计算梯度loss的方法,并可以将梯度应用于变量。优化器里包含了实现了经典的优化算法,如梯度下降和Adagrad。 优化器是提供了一个可以使用各种优化算法的接口,可以让用户直接调用一些经典的优化算法,如梯度下降法等等。优化器(optimizers)类的基类。这个类定义了在训练模型的时候添加一个操作的API。用户基本上不会直接使用这个类,但是你会用到他的子类比如GradientDescentOptimizer, AdagradOptimizer, MomentumOptimizer(tensorflow下的优化器包)等等这些算法。

推荐文章
暂无评论
暂无评论~