Auto Byte

Science AI

yann作者

# 自动驾驶中的障碍物行为预测

1. 简介

2. 行为预测的难点

3. 预测算法介绍

3.1 基于策略选择的预测算法

2018年UCSD团队提出了一种预测算法[6]，使用长短期记忆神经网络完成策略选择和轨迹生成，网络使用端到端方式完成模型的训练。下图3展示了该团队提出的多模态预测模型，图中上半部分为决策选择过程，可以看到网络的输入为障碍物 个时刻的位移坐标，最终经过两个柔性最大值传输函数（Softmax）输出横向行为决策 与纵向行为决策 。横向行为决策包括左变道、直行、右边道；纵向行为决策包括减速、匀速、加速。通过两两匹配（对应概率相乘）即可得到9种车道行为的  。

3.2 基于占有网格的预测算法

3.3 基于能量图的预测算法

3.4 其余预测算法

4. 总结

[1] Gupta A, Johnson J, Feifei L, et al.“Social GAN: Socially Acceptable Trajectories with Generative AdversarialNetworks.” CVPR, 2018.

[2] KimB D, Kang C M, Lee S H, et al. “Probabilistic Vehicle Trajectory Predictionover Occupancy Grid Map via Recurrent Neural Network.” arXiv preprint, 2017.

[3] Mohajerin N, Rohani M. “Multi-StepPrediction of Occupancy Grid Maps with Recurrent Neural Networks.” CVPR, 2019.

[4] YiS, Li H, Wang X. “Understanding pedestrian behaviors from stationary crowdgroups.” CVPR, 2015.

[5] Ferguson D, Darms M, Urmson C, et al.“Detection, prediction, and avoidance of dynamic obstacles in urbanenvironments.” IVS, 2008.

[6] Deo N, Trivedi M M. “Multi-ModalTrajectory Prediction of Surrounding Vehicles with Maneuver based LSTMs.” IVS,2018.

[7] Xinli G, Huawei L, Biao Y, et al. “AScenario-Adaptive Driving Behavior Prediction Approach to Urban AutonomousDriving.” Applied Sciences, 2017.

[8] Hao W, Ziyang C, Weiwei S, et al.“Modeling Trajectories with Recurrent Neural Networks.” IJCAI, 2017.

[9] Khosroshahi A, OhnBar E, Trivedi M M.“Surround vehicles trajectory analysis with recurrent neural networks.” ITSC,2016.

[10] Yeping H， Wei Z， Tomizuka, Masayoshi. “Probabilistic Prediction of VehicleSemantic Intention and Motion.” IVS, 2018.

[11] Wenjie L, Bin Y, Raquel U. “Fast andFurious: Real Time End-to-End 3D Detection, Tracking and Motion Forecastingwith a Single Convolutional Net.” CVPR, 2018.

[12] Shashank S, Junaid A A, et. al. “INFER:INtermediate representations for FuturE pRediction.” arXiv 2019.

[13] Junting P, Chengyu W, Xu J, et al.“Video Generation from Single Semantic Label Map.” CVPR, 2019.

[14] Tingchun W, Mingyu L, Junyan Z, et al.“Video-to-Video Synthesis.” NeurIPS, 2018.

[15] Jiachen L, Wei Z, and Tomizuka M.“Generic Vehicle Tracking Framework Capable of Handling Occlusions Based onModified Mixture Particle Filter.” IVS, 2018.

（人工）神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型，那时候研究者构想了「感知器（perceptron）」的想法。这一领域的研究者通常被称为「联结主义者（Connectionist）」，因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型，它们都是前馈神经网络：卷积神经网络（CNN）和循环神经网络（RNN），其中 RNN 又包含长短期记忆（LSTM）、门控循环单元（GRU）等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习，但也有一些为无监督学习设计的变体，比如自动编码器和生成对抗网络（GAN）。

IoT (物联网) 三层结构中的一层，用于识别物体，采集信息等感知类的任务；另外两层是应用层（Application layer）和网络层（Network layer）。

http://www.baidu.com