何晖光作者

何晖光:多模态情绪识别及跨被试迁移学习

编者按:情感计算的概念由MIT媒体实验室Picard教授于1997年提出,它旨在通过赋予计算机识别、理解、表达和适应人类情感的能力来建立和谐人机环境。情感计算的基本问题包括通过表情、动作、脑电等生理信号进行情绪识别。相比于传统情绪识别方法,如何利用更可靠的脑电信号实现鲁棒的识别并优化情绪状态已成为一大难点。今天,来自中科院自动化所的何晖光研究员为我们带来题为“多模态情绪识别及跨被试迁移学习”的讲座。

报告包括以下几个方面的内容。

情感是大脑的高级活动,它是一种复杂的心理和生理状态,高级活动包括记忆、学习、决策和情绪等。情绪是情感的一个外部表现,是我们对事件内在或外在的反应。一个成功的人通常要同时具备高智商和高情商。情商反映一个人控制调节自己情感的能力,以及处理自己与他人之间情感关系的能力。情感很重要,它会影响我们做决策。情感计算要赋予计算机像人一样的观察理解和生成情感特征的能力,最终使得计算机像人一样进行自然亲近和生动的交互。情感计算中基本问题包括情绪识别。

以’emotion regulation’和’emotion recognition’作为关键词搜索文章,我们发现相关研究研究逐步增加,最高有每年1700篇左右。

Charles Darwin为情感领域做了两大贡献,一个是提出动物情感和人类情感是一致的,另一个是最基础的情感,包括愤怒、恐惧、悲伤等,在不同物种和文化中是共享的。第二点不仅在情感上适用,在语言上也是适用的,比如在不同的人种和文化中,“爸爸”、“妈妈”发音都是比较类似的。William在著作中认为情绪是人们对于自己身体所发生变化的一种感觉,先是有身体的变化才有情绪的感知,任何情绪的产生都有一定伴随身体的变化,包括面部表情、肌肉紧张、内脏活动等,可以通过外部感知推测情绪发生了什么样的变化。

2016年在《科学美国人》上有关于人类未来的20个大问题,其中一个是“我们能用可穿戴技术来探测自己的情绪吗”,说明我们还是希望能够了解自己的情绪。现在经常有人戴手环,使用各种APP,来记录每天走了多少步,吃了多少卡路里的食物,希望借助各种外部探测手段来了解自己。从这个意义上来说人们需要了解自己的情绪,进而来调控情绪。

下面介绍一下情感科学在学术界和工业界的动态。微软全球执行副总裁沈向阳认为,人工智能的研究要强调机器人与人之间的感性化交互,强调情感计算,实现情感智能。李飞飞教授认为要加强对情感情绪的了解。MIT的Rosalind教授认为情感在一系列智能活动中都起到核心作用,如感知、决策、逻辑推理、社交、行动选择、言语措辞等。AI研究如果忽视情感,就难以取得进展。

谭铁牛院士也曾说过“机器人有智商没情商”。在人机交互领域,Pepper、MIT以及日本一些公司做出的机器人能够像人一样自然亲切地进行交互。

在医学领域,情绪识别还为精神疾病诊断治疗提供依据。比如自闭症的诊断,利用复杂的量表检测比较困难。如果有一些比较好的情绪识别的工具,比如戴脑电,在病人活动的时候进行实时监测,可以对诊断提供帮助。同样还可以应用到自闭症的诊断和治疗中。

2014年的“马航370”事故,迄今原因仍然不明。其中有一个疑点是,机长在飞机失联前不到一个月时,在电脑游戏中操纵虚拟航班飞入南印度洋的深处,大家因此怀疑他是不是一直有自杀倾向。国际民航组织(ICAO)要求成员国的飞行员达到一定的心理健康标准。

2015年3月份德国之翼航空公司在法国阿尔卑斯山脉坠毁。后来得知副驾驶员在飞行过程中多次怂恿机长上厕所,机长离开后他反锁驾驶舱,启动下降按纽,导致坠毁。调查中得知副驾驶确实有心理疾病,上一个例子是推测,而后一个已经被证实。所以飞机员的状态对飞行安全很重要。情绪识别准确的话,可以避免此类灾难的发生。

情绪识别中一个新的领域叫做Affective Brain-Computer Interaction,也就是情感的脑机结合。脑机接口在大脑和外界设备之间建立直接的通道。但是,这个脑机接口不仅仅依赖于直接对大脑信号的测量,还包括其他心理、生理的信号,包括机电、眼电、心电等等。

上图是欧洲关于脑机接口发展的路线图,是Horizon2020的计划,涉及脑机接口的研究、提高、增强、恢复和替代。

白皮书里给出了一些建议。首先是关于大脑状态的监测。然后,一个能够监测人脑精神状态的客观度量对于决策很有帮助。类似的,在比较难做决策的时候,可以暂时放松一下,在更好的状态下做决策。最后,一个很重要的问题是如何识别情绪,并且保证鲁棒性,还有如何优化情绪状态。

传统识别情绪的方法包括面部表情、语音和肢体动作。这些数据比较容易获取,但是可靠度不是很高,受文化背景影响较大,也不太适用于残疾人。

现在出现了基于脑电识别情绪的方法,相较于传统情绪识别方法,有更高的可靠性。基于脑电的方法要求被试者戴一个电极帽,然后采集大脑的信号。所以它的数据包括空间和时间,相当于四维的时空数据,每一个电极相当于一个时间序列。

基于EEG情绪识别的一般流程如上图所示。首先,设计实验,找被试者,对他施加一些刺激。然后,对他进行数据采集。接下来是数据预处理和特征提取及分类。

EEG情绪识别里面有哪些关键问题呢?情绪识别有哪些特征比较好?情绪识别最关键的频段和电极位置在哪里?EEG如何与其他模态信号进行多模态情绪识别?并且不同人的EEG信号差别很大,怎样把这个人的模型用到另外一个人模型上也值得思考。

今天我向大家介绍一下我们组近期的两个工作。一个是关于风格迁移映射的多元迁移学习,第二是跨被试多模态情绪学习。

首先介绍一下数据集。这个数据集SEED是上海交通大学吕宝粮教授提供的,有15个被试,看15个视频片断,每个约有4分钟。受试者看完之后要对自己的情绪进行评估,然后进行休息。情绪分成三类,包括积极的、中性的、和负面的情绪。电影都是《唐山大地震》《泰囧》这种刺激性比较强的。

这些数据集做了预处理,包括降采样和特征提取,这些特征也可公开下载,谢谢吕老师做的很好的铺垫工作。

传统方法一般是把EEG数据提取特征然后拼接起来,再建立特征向量到情绪标签的映射。这样导致电极之间的空间关系丢失。

我们前期做了一项工作,保留电极之间拓扑结构,将电极位置转换为图像,利用CNN进行测试,得到比较好的效果。深度学习用到基于脑电的情绪识别是可行的,而且效果还不错。

但是更进一步,对一个人采集数据,进行训练后,构建了一个模型。但是如果来了一个新用户又要重新建立模型。原来的模型不够鲁棒,所以我们要研究如何将一个人的模型迁移到另一个人。传统机器学习针对一个任务或领域训练模型,对另外一个领域或任务又要重新训练模型。迁移学习要把这个领域的知识迁移到另外一个领域。

我们做的是基于风格迁移映射的多源迁移学习。传统机器学习是在不同领域或任务上分别训练模型,迁移学习不同的领域和任务共享知识。我们把知识输出端称为源(source),输入端称为目标(target)。

现在要考虑它的应用场景。比如说我们针对过往被试训练了模型,现在有了一个只有少量标注的新被试,我们如何基于过往被试的模型实现新被试高精度的分类?我们提出一个多源迁移学习框架。选择合适的源,在每个合适的源上,消减目标和源的差异,使源上的分类器直接用于推断目标中样本的情绪标签。在多分类器集成框架下,我们实现了对目标域的高精度分类。

这个过程包括这样上图三个步骤。首先,我们有很多个源,来了新被试后,要从以前被试者中选择合适的然后迁移到新的被试上,也就是进行源的选择。第二步是特征映射,把以前的源和现在的目标之间建立一个映射关系,这里通过一个变化矩阵学习M,新被试可以通过M映射回来。最后,将以前的分类器集成得到这个标签。核心问题是如何学习M。

我们受刘成林老师发表在PAMI上的文章启发,原有工作是字符识别中针对不同字体风格的迁移,其映射方式是仿射变换。上图是我们定义的目标函数,o相当于源,d相当于映射终点,后面两个是正则项。这个目标函数二次规划的问题,可以有一个解析解。

现在问题是如何针对新样本定义映射终点。我们这里不是直接做映射,采用定义原型的方式。比如说有三类情绪,传统方法通过三类分类器可以把分类面得到。离分类面越远的样本越容易被区分,越近越难以被区分。离分类面很近的样本如果也迁移过去的话可能会导致负迁移,所以分类面上的样本可以去掉。我们对以前情绪样本进行聚类聚类中心是原形,目的是向新的聚类中心做映射。有两种原形定义的方式,一个是基于k均值聚类的方法,一个是基于高斯模型的方法。

做迁移的时候,有些目标样本上是有样本标签的,置信度就比较高,但是还有一部分目标没有标签,这时要如何迁移呢?我们需要定义置信度,以前的做法是把最近的距离和第二近的距离做一个差,定义一个函数。我们定义加权距离,有两种方式,一种是监督式,仅仅只用有带标签的源里的数据,没有用到没有标签的数据。

而半监督式不仅利用到带标签的数据,还利用没有标签的数据。我们通过分类器对它进行预测,每个预测有一个概率值,得到置信度之后进行迁移学习

这是迁移学习的结果,比较之前利用的一般的模型,这个模型是把很多被试的数据放在一起进行训练,比如说被试前70%进行训练,后面30%进行测试,得到一个分类器,它相对于单个样本训练模型更加鲁棒。最后结果是三分类情况下平均正确率提升22.8%。

然后我们进行可视化,以前的方法比较难以区分情绪,通过迁移学习后能够比较好地区分开。准确率还与源样本的数目有关系,右下的图体现了选择不同源的个数对分类正确率的影响,我们发现选择7个源就可达到较好的效果,如果选择源的个数太多,会增加计算复杂度。另一方面,如果标签越多性能越好,但我们从上图可以看出,标签数目比较少的时候也能够得到比较好的效果。

我们把学到的标签映射回脑地形图,进行可视化。我们在脑电上观察,源和目标在处理前很不相似,但迁移之后比较相似。在我们提出的方法中,仅需采集新被试的少量标注样本,就能使现有模型直接用在新被试,具备重要的实际应用价值。本方法要求新被试的少量标注样本,在此基础上,也可以利用新被试的无标注样本,可在监督学习及半监督学习下工作。在迁移中使用多个源,可有效提升模型的泛化能力。这个工作已经被IEEE Trans. On Cybernetics接收。

我们的第二个工作是跨被试多模态的情绪识别。

情绪识别任务有两大特点,一个是多模态,模态包括面部表情、语音等各种各样的生理模态。另一个是跨被试,如何从以前的模型迁移到新的模型。

我们用多视图变分自编码来融合多种模态。我来分享一下多视图变分自编码,我们现在有两个模态,一个模态是脑电,一个模态是眼动,脑电和眼动都反映情绪。

因此就把它当做多视图理解,通过多视图编码找到两种视图之间的隐含表征。以前的传统自编码把隐含表征的先验和后验都当作高斯分布。这里有两个模态,做了一个混合高斯,可以通过脑电自己生成脑电,脑电可以生成眼动,在这种框架下二者可以互相生成。多视图变分自编码是一个多视图表示学习,利用了贝叶斯推断。脑电和眼动有一些权重,权重体现出对情绪识别的重要性。

现在我们来看一下跨被试多模态数据建模场景。源领域有部分标记数据,这是半监督的,目标领域都是没有标记的。源领域和目标领域都有多种模态,目标是做一个目标领域和源领域通用的分类器。

上图红色框里是源领域的变分自编码,蓝色框里是目标领域的变分自编码,他们在隐含层是共享的。我们想学习的这些隐含的表示,使二者隐含表征的距离更小,相当于加了约束。另外一方面,源领域内做分类学习,领域间要对抗,使得两个领域隐含表征分布接近,同时使得隐含表征在源领域内有很好的性能。所以目标函数包括图中三个部分。

上图是实验数据,不仅有EEG还有眼动数据,但是眼动数据量少一些,只有9个被试。另外还有人脸表情的数据,有30个被试,这都是多模态数据集。

和以前的迁移方法进行比较,性能得到提升。蓝色和红色代表不同领域,如果以前没有领域对抗的话,两个领域差异性比较大,如果用我们这个领域对抗进行约束的话,差异性小很多。这个工作发表在ACM MM2018上。

最后做一下总结和展望。我们设计了用于高精度EEG情绪识别的深度学习方法框架,并针不同实际场景,分别提出了监督式、半监督式和无监督迁移学习法,使得情绪识别模型能够跨被试使用,具备重要的应用价值。接下来还有很多方面可以继续探讨,比如远距离的迁移学习,源被试之间如果差异特别大,直接迁移很难,需要从不同被试中选择迁移路径。还有在zero-shot learning,one-shot learning和online learning上的应用都值得继续探讨。

参考文献链接:

https://pan.baidu.com/s/1Ul6T1klBaJt1ZC46Lbd3Ag

密码: 

xqs3

接下来是提问环节。

提问者1:EEG不像表情信号可以直观看出是哪种情感,EEG信号在采集的时候,数据库也是通过视频标签来做的,但不同人对视频感觉是不一样的,可能高兴的视频一个人因为笑点比较低没有产生很大情绪的反应,这样会不会造成数据库本身不是很可靠的问题?在脑电采集的时候,标定可靠性方面你有什么更好的建议?

何晖光:你这个问题问得非常好,因为不同的人对相同刺激反应不一样。我们对情绪打标签不是通过视频去打的,是在做了实验之后的一个自评估环节,被试者要通过自己的判断打一个分数。

提问者2:这个数据库的标签是很平均的标签吗?

何晖光:给的这些视频冲击性都特别强,刺激性特别强,都是表较能带来情绪波动的视频。

提问者3:直接将脑电数据应用到多模态情绪识别可靠吗?

何晖光:我们不是直接将脑电数据拿过来用,也利用各种特征进行了评测,比如是哪个波段,是什么熵。另外一个方面,脑电差异性太大,所以我们想到用迁移学习来做。

提问者4:特征是用的什么呢?

何晖光:这个特征用的是功率谱。比如说脑电之前有一定的预处理,了解到功率和微分熵比较好,便加以利用。现在也有直接用未处理数据的,效果有的好,有的不好,还在继续探讨过程中。

提问者5:您在第一个工作中,数据怎么划分?

何晖光:源数据是已经采到的数据,目标数据是来了一个新的被试,需要从这源被试相似样本来做迁移,如果用不相似的样本会带来负迁移。

提问者6:差异性是只有不同的人表现出来的吗?

何晖光:这里是通过不同的人体现的。

提问者7:想问源样本一下选了多少个?

何晖光:大概选7个还不错,如果选太多后面计算量太大。

--end--

作者简介:

何晖光,中科院自动化所研究员,博生生导师,中国科学院大学人工智能学院脑认知与智能医学教研室主任、岗位教授,中科院青年创新促进会优秀会员。中科院脑科学与智能技术卓越中心团队成员。中国图象图形学会视觉大数据专委会及机器视觉专委会常务委员,IEEE高级会员,CCF-CV专委会委员。分别于1994年(本科),1997年(硕士)毕业于大连海事大学,2002年在中国科学院自动化研究获博士学位。曾在美国罗切斯特大学、加拿大滑铁卢大学、美国北卡大学教堂山分校做博士后、高级研究学者。何晖光博士先后主持5项国家自然科学基金(包括国家自然基金重点项目)、2项863项目等,先后获得国家科技进步二等奖两项(分别排名第二、第三),北京市科技进步奖两项,中科院首届优秀博士论文奖,北京市科技新星,中科院”卢嘉锡青年人才奖”,中科院青促会优秀会员等荣誉称号。任国家自然科学基金, 国家863计划以及科技部国际合作项目的评审专家。其研究领域为脑与认知科学,模式识别,医学影像处理,脑-机接口,计算机图形学等, 其研究结果在IEEE TNNLS, IEEETCyber, NeuroImage, Human Brain Mapping, Pattern Recognition, MICCAI等相关领域的国内外核心期刊以及国际主流会议上发表文章120余篇。

深度学习大讲堂
深度学习大讲堂

高质量原创内容平台,邀请学术界、工业界一线专家撰稿,致力于推送人工智能与深度学习最新技术、产品和活动信息。

理论迁移学习情绪识别何晖光
12
相关数据
李飞飞人物

李飞飞,斯坦福大学计算机科学系教授,斯坦福视觉实验室负责人,斯坦福大学人工智能实验室(SAIL)前负责人。专业领域是计算机视觉和认知神经科学。2016年11月李飞飞加入谷歌,担任谷歌云AI/ML首席科学家。2018年9月,返回斯坦福任教,现为谷歌云AI/ML顾问。10月20日斯坦福大学「以人为中心的AI计划」开启,李飞飞担任联合负责人。11月20日李飞飞不再担任SAIL负责人,Christopher Manning接任该职位。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

半监督学习技术

半监督学习属于无监督学习(没有任何标记的训练数据)和监督学习(完全标记的训练数据)之间。许多机器学习研究人员发现,将未标记数据与少量标记数据结合使用可以显着提高学习准确性。对于学习问题的标记数据的获取通常需要熟练的人类代理(例如转录音频片段)或物理实验(例如,确定蛋白质的3D结构或确定在特定位置处是否存在油)。因此与标签处理相关的成本可能使得完全标注的训练集不可行,而获取未标记的数据相对便宜。在这种情况下,半监督学习可能具有很大的实用价值。半监督学习对机器学习也是理论上的兴趣,也是人类学习的典范。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

高斯分布技术

正态分布是一个非常常见的连续概率分布。由于中心极限定理(Central Limit Theorem)的广泛应用,正态分布在统计学上非常重要。中心极限定理表明,由一组独立同分布,并且具有有限的数学期望和方差的随机变量X1,X2,X3,...Xn构成的平均随机变量Y近似的服从正态分布当n趋近于无穷。另外众多物理计量是由许多独立随机过程的和构成,因而往往也具有正态分布。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

二次规划技术

二次规划(Quadratic programming),在运筹学当中,是一种特殊类型的最佳化问题。

逻辑推理技术

逻辑推理中有三种方式:演绎推理、归纳推理和溯因推理。它包括给定前提、结论和规则

贝叶斯推断技术

贝叶斯推断(英语:Bayesian inference)是推论统计的一种方法。这种方法使用贝叶斯定理,在有更多证据及信息时,更新特定假设的概率。贝叶斯推断是统计学(特别是数理统计学)中很重要的技巧之一。贝叶斯更新(Bayesian updating)在序列分析中格外的重要。贝叶斯推断应用在许多的领域中,包括科学、工程学、哲学、医学、体育运动、法律等。在决策论的哲学中,贝叶斯推断和主观概率有密切关系,常常称为贝叶斯概率。

降采样技术

降采样是数位信号处理领域中的一种多速频数字信号处理(multi-rate digital signal processing)系统中采样率转换(sample rate conversion)技术的一种,或指代用来降低信号采样率的过程,与插值相反——插值用来增加取样频率——降采样通常用于降低数据传输速率或者数据大小。因为降采样会有混叠的情形发生,系统中具有降采样功能的部分称为降频器(decimator)。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

监督学习技术

监督式学习(Supervised learning),是机器学习中的一个方法,可以由标记好的训练集中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。训练集是由一系列的训练范例组成,每个训练范例则由输入对象(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

情感计算技术

情感计算(也被称为人工情感智能或情感AI)是基于系统和设备的研究和开发来识别、理解、处理和模拟人的情感。它是一个跨学科领域,涉及计算机科学、心理学和认知科学(cognitive science)。在计算机领域,1995年Rosalind Picard 首次提出affective computing。研究的目的是使得情感能够模拟和计算。这个技术也可以让机器人能够理解人类的情绪状态,并且适应它们的行为,对这些情绪做出适当的反应。这是一个日渐兴起的兴欣领域

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

目标函数技术

目标函数f(x)就是用设计变量来表示的所追求的目标形式,所以目标函数就是设计变量的函数,是一个标量。从工程意义讲,目标函数是系统的性能标准,比如,一个结构的最轻重量、最低造价、最合理形式;一件产品的最短生产时间、最小能量消耗;一个实验的最佳配方等等,建立目标函数的过程就是寻找设计变量与目标的关系的过程,目标函数和设计变量的关系可用曲线、曲面或超曲面表示。

迁移学习技术

迁移学习是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题。 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴。

k均值聚类技术

k 均值聚类算法是原型聚类(prototype-based clustering)和划分聚类算法(Partitional Algorithms)中最常见的算法。k 均值算法的目标是最小化聚类所得簇划分的平方差。

人机交互技术

人机交互,是一门研究系统与用户之间的交互关系的学问。系统可以是各种各样的机器,也可以是计算机化的系统和软件。人机交互界面通常是指用户可见的部分。用户通过人机交互界面与系统交流,并进行操作。小如收音机的播放按键,大至飞机上的仪表板、或是发电厂的控制室。

聚类技术

将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于分类学,但是聚类不等于分类。聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

仿射变换技术

仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。 一个对向量平移,与旋转放大缩小的仿射映射为 上式在齐次坐标上,等价于下面的式子 在分形的研究里,收缩平移仿射映射可以制造制具有自相似性的分形

推荐文章
你们可以了解一下我现在做的研究。写的挺基础的。
虽然你们认为很基础,但是我们看了半天也还是没看太懂。