Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

Vinoj Jayasundara 等作者李诗萌 王淑婷编译

仅用200个样本就能得到当前最佳结果:手写字符识别新模型TextCaps

由于深度学习近期取得的进展,手写字符识别任务对一些主流语言来说已然不是什么难题了。但是对于一些训练样本较少的非主流语言来说,这仍是一个挑战性问题。为此,本文提出新模型TextCaps,它每类仅用200个训练样本就能达到和当前最佳水平媲美的结果。

由于深度学习模型近期取得的进展,对于许多主流语言来说,手写字符识别已经是得到解决的问题了。但对于其它语言而言,由于缺乏足够大的、用来训练深度学习模型的标注数据集,这仍然是一个极具挑战性的问题。

尽管 CNN 可以很好地理解图片中的低级和高级特征,但这样做会在池化层上丢失有价值的信息。CNN 的训练需要大量训练样本(一般每一类需要数千或数万个样本)才能成功地对图像分类。因此人们对用少量训练样本训练成功的 CNN 有着浓厚兴趣。

本文提出了一种技术,它借助胶囊网络(Capsule Networks,CapsNets)[4] 解决了标注数据集太小的问题。我们仅通过操纵实例化参数 [5],利用了 CapsNet 增强数据的能力。在本文的例子中,CapsNet 不仅识别了字符图像,还学习了它的属性。这让 CapsNet 得以在标注数据很少的字符识别问题中大展拳脚。

本文的架构以 Sabour 等人提出的 CapsNet 架构 [4] 为基础,该架构是由胶囊网络和全连接解码器网络组成的。研究人员用反卷积网络(deconvolutional network)代替了解码器网络,同时还对胶囊网络做了一些小改动。

通过给表征实体属性的实例化参数加入一些可控噪声,研究人员转换实体以表征现实中发生的实际变化。这样就产生了一种全新的数据生成技术,这种技术生成的数据会比基于仿射变换生成的增强数据更加逼真。

重建准确率在很多情况下也很重要,因此研究人员提出了一种从经验上讲很合适的策略,这种策略结合了可以显著提升重建性能的损失函数。该系统在每类样本只有 200 个数据点的情况下得到了和当前最佳结果相当的结果。如果用更多训练数据,可以得到更好的结果。

本文的主要贡献如下:

  • 在所有可用训练样本上训练该系统后,在 EMNIST-letters、EMNIST-balanced 以及 EMNIST-digits 字符数据集上得到的结果都优于当前最佳结果;

  • 研究人员还在非字符数据集 Fashion-MNIST 上评估了该架构,以确保模型的灵活性和鲁棒性。他们用 200 个训练样本得到了非常好的结果,并用完整的数据集得到了当前最佳的结果;

  • 研究人员提出了一种用少量训练样本(每一类 200 个数据)训练胶囊网络的新技术,并在相同数量的测试样本上实现了当前最佳的性能。和当前最佳的系统相比,我们的模型只需要 10% 的数据就可以得到类似的结果;

  • 研究人员还提出并评估了解码器网络的几个变体,用不同的损失函数分析了解码器网络的性能,以提供组合损失函数的适当策略。

论文:TextCaps : Handwritten Character Recognition with Very Small Datasets 

论文地址:https://arxiv.org/pdf/1904.08095.pdf

摘要:尽管字符识别系统进展很快,但由于缺乏大量有标注的训练数据,很多本地化语言还是难以从中获益。这是因为这样的语言难以获得大量标注数据,而深度学习还无法通过少量训练样本正确学习。

为了解决这个问题,我们引入了一种根据现有样本生成新训练样本的技术。通过给相应的实例化参数添加随机可控噪声,这个新技术可以产生逼真的增强数据,这些增强数据也会反映出人类实际手写字符时会出现的一些变化。

我们只用每类 200 个训练样本的数据进行训练,就得到了超越基于 EMNIST-letter 数据集所获的现有字符识别的结果,同时还获得了与 EMNIST-balanced 、EMNIST-digits 以及 MNIST 这三个数据集相当的现有结果。

我们还开发了一种用损失函数组合有效改善重建能力的策略。我们的系统在缺乏大量标注训练数据的本地化语言的字符识别任务中很有用,甚至在其它相关的通用内容(比如目标识别)上也是如此。

用胶囊网络进行字符识别

我们提出了一种由胶囊网络和解码器网络组成且针对字符识别任务的架构,如图 1 和图 2 所示。

图 1:TextCap 模型:用于字符分类的 CapsNet 模型。


图 2:TextCap 解码器:用于字符重建的解码器网络。通过屏蔽 TextCap 分类器的 DigitCaps 层来获得网络的输入。

基于实例化参数扰动的图像数据生成技术

用预训练的解码器网络,我们可以只用实例化参数向量成功重建原始图像。该扰动算法背后的原理是,通过在实例化向量值中添加可控的随机噪声,我们可以创建和原始图像迥然不同的新图像,从而有效扩大训练数据集。

图 3 展示了改变一个特定实例化参数后产生的图像变体。

图 3:扰动实例化参数后产生的字符变体。

类似地,每一个实例化参数都分别或共同负责图像的某个特定属性。因此,我们提出了一种新技术,它可以根据训练样本有限的数据集产生新数据集,如图 4 所示。

图 4:提升解码器性能的整体方法。

实验和结果

我们从表 1 中每个数据集的训练集中选取了 200 个训练样本来训练 TextCaps,并用每个数据集的完整测试集进行测试。为了测试 TextCaps 架构的性能,我们还用完整的训练集训练了模型,并用完整的测试集进行测试。

表 1:用于评估 TextCaps 的五个数据集。

表 2:TextCaps 和当前最佳结果的比较,表中展示了 3 次试验的平均值和标准差。

表 3:使用不同的损失函数组合时产生的每个重建结果的 PSNR 值。我们在这里用了两个解码器网络模型,每个解码器都有一个损失函数。对每一个损失函数组合来说,第一行的 PSNR 值对应第一个重建损失函数(用在第一个解码器中),第二行对应的是第二个损失函数(用在第二个解码器中)。

原文链接:https://arxiv.org/abs/1904.08095

理论手写识别小样本学习解卷积网络胶囊网络计算机视觉
3
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

池化技术

池化(Pooling)是卷积神经网络中的一个重要的概念,它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效的原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合。通常来说,CNN的卷积层之间都会周期性地插入池化层。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

图像分类技术

图像分类,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。

CapsNet技术

Hinton 等人实现了一个简单的 CapsNet 架构,该架构由两个卷积层和一个全连接层组成,其中第一个为一般的卷积层,第二个卷积相当于为 Capsule 层做准备,并且该层的输出为向量,所以它的维度要比一般的卷积层再高一个维度。最后就是通过向量的输入与 Routing 过程等构建出 10 个 v_j 向量,每一个向量的长度都直接表示某个类别的概率。

仿射变换技术

仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。 一个对向量平移,与旋转放大缩小的仿射映射为 上式在齐次坐标上,等价于下面的式子 在分形的研究里,收缩平移仿射映射可以制造制具有自相似性的分形

推荐文章
暂无评论
暂无评论~