文永亮作者哈尔滨工业大学(深圳)学校目标检测、GAN研究方向

CVPR 2019 | 天秤座R-CNN:全面平衡的目标检测器

推荐理由

这是一篇浙江大学和香港中文大学发表于 CVPR 2019 的论文,这篇文章十分有趣,网友戏称:“无痛涨点,实现简单,良心 paper”,在我看来确实是这样的,没有太大的改造结构,不需增加计算成本的条件下,居然能涨两个点 mAP。

除了本文解读的 Libra R-CNN(天秤座 RCNN)[1],我记得陈恺他们港中文的实验室今年还中了一篇 CVPR 2019,Region Proposal by Guided Anchoring [2],这篇也是不错的,看题目就知道是指导 anchor 的形状涨分的了。

这两篇改进的源码都会在 Github 上放出,作者表示还在完善中,地址是:

https://github.com/open-mmlab/mmdetection

三个不平衡

纵观目前主流的目标检测算法,无论 SSD、Faster R-CNN、Retinanet 这些的 detector 的设计其实都是三个步骤: 

  • 选择候选区域 

  • 提取特征 

  • 在 muti-task loss 下收敛 

往往存在着三种层次的不平衡: 

  • sample level

  • feature level

  • objective level 

这就对应了三个问题: 

  • 采样的候选区域是否具有代表性?

  • 提取出的不同 level 的特征是怎么才能真正地充分利用?

  • 目前设计的损失函数能不能引导目标检测器更好地收敛

其实如果不对 detector 的结构做功夫的话,针对这些 imbalance 改进的其实就是为了把 detector 的真正功效给展现出来,就是如果把一个目标检测器 train 好的问题。

对应的三个改进

IoU-balanced Sampling 

作者认为 sample level 的不平衡是因为随机采样造成的,Ross Girshick 后面提出了 OHEM(online hard example mining,在线困难样本挖掘)是一个 hard negative mining 的一种好方法,但是这种方法对噪音数据会比较敏感。随机采样造成的不平衡可以看下图:

作者发现了如果是随机采样的话,随机采样到的样本超过 70% 都是在 IoU 在 0 到 0.05 之间的,有人会问不是随机吗?为什么大部分样本都落在了 IOU 较小的部分了呢?

因为样本的分布在 IoU 上并不是均匀分布的,生成候选框时随机采样会造成背景框远远大于框中 GT 的框,一张图这么大,是目标物体的区域只占很小一部分,背景占了绝大多数的位置,所以大部分样本都挤在了 IoU 在 0 到 0.05 的区间了。

作者觉得这里就是不科学的地方,统计得到的事实是 60% 的 hard negative 都落在 IoU 大于 0.05 的地方,但是随机采样只提供了 30%。所以作者提出了 IoU-balanced Sampling

随机采样就是比如你要选 N 个 hard negative,有 M 个候选框,选中的概率就是:

如果一共还是要采样 N 个,通过 IoU 的值划分为 K 个区间,每个区间中的候选采样数为,则IoU-balanced sampling 的采样公式即为:

作者通过在 IoU 上均匀采样,把 hard negative 在 IoU 上均匀分布,在 COCO 数据集上达到的效果比 OHEM 的要好,并且这样简单很多。

Balanced Feature Pyramid

feature level 的不平衡表现在 low/high level 特征的利用上,如何利用不同分辨率的特征。具体分为四步:

  • rescaling

  • integrating

  • refining

  • strengthening

1. rescaling & integrating

假设表示第 l 层特征,越高层分辨率越低,若有的多层特征,C2 分辨率最高,我们知道低层特诊分辨率高往往学习到的是细节特征,高层特征分辨率低学习到语义特征,把四层特征 resize 到中间层次的 C4 的 size,然后后面再做简单的相加取平均操作:

就是这样简单的操作并没有引入什么计算就可以实现,最终在 AP 上也得到了验证是有效的。

2. refining & strengthening

rescaling 后取平均提取到的的特征还可以进一步地 refine 成更 discriminative,作者这里用到了 non-local 模块,paper 中使用了 Gaussian non-local attention [4] 增强 integrate 后的特征。

就像 Figure 4 画的一样,这样提取的特征其实与 FPN 可以一同使用,是作为 feature pyramid 的补充,作为一种增强手段。

Balanced L1 Loss

Fast R-CNN [5] 中是通过 multi-task loss 解决 Classification(分类)和 Localization(定位)的问题的,定义如下:


分别对应着分类和定位的损失函数,p, u 分别是的预测和目标,是对应 u 类的回归结果。v 是回归目标。λ 用于在多任务学习下调整损失权重。 

之所以会提出 Balanced L1 loss,是因为这个损失函数是两个 loss 的相加,如果分类做得很好地话一样会得到很高的分数,而导致忽略了回归的重要性,一个自然的想法就是调整 λ 的值。

我们把样本损失大于等于 1.0 的叫做 outliers,小于的叫做 inliers。由于回归目标是没有边界限制的,直接增加回归损失的权重将会使模型对 outliers 更加敏感。

对于 outliers 会被看作是困难样本(hard example),这些困难样本会产生巨大的梯度不利于训练的过程,而 inliers 被看做是简单样本(easy example)只会产生相比 outliers 大概 0.3 倍的梯度。

首先我们看 Smooth L1 Loss:

所以作者从常见的 Smooth L1 Loss 中推导出了 Balanced L1 Loss:

它的梯度计算遵从下面的准则:

作者从需求出发,想要得到一个梯度当样本在 |x|<1 附近产生稍微大点的梯度,作者设计了下面这个函数,从 Figure 5 可以看出 αln(b|x|+1) 大于 x。

根据梯度反求出 Lb(x) 表达式:

还有很重要的一点就是为了函数的连续性,需要满足 x=1 时 Lb(1)=γ:

其实意思就是

这个函数不得不说非常妙,成功掰弯了梯度,我也不知道他怎么想出来的。

实验结果

在 COCO test-dev 数据集上与目前 state-of-the-art 的目标检测的方法对比,能比 Faster R-CNN、RetinaNet、Mask R-CNN 要高 2+ 的 AP。

三种解决方案的各种组合情况的对比实验:

值得注意的是,作者对 IoU-balanced samping 做实验时对 K 的取值做了实验证明该方法对 K 的取值并不敏感,即对 IoU 分多少个区间并不敏感。

这是 IoU-balanced sampling 的候选框的可视化效果:

总结

paper 逻辑清晰,紧紧抓住三个层次去做改进,三个问题对应三个解决方案,结构清晰一目了然,实验充分,相比两个单阶段和两阶段检测器的两个代表 Faster R-CNN 和 RetinaNet 分别高了 2+ 的 AP,图画得也不错,我觉得是篇好论文,而且应该是作者在比赛中实际运用到的才写出了这篇 paper,以后目标检测的比赛我觉得都可以参考这篇去做改进。

参考文献

[1]. Pang J, Chen K, Shi J, et al. Libra R-CNN: Towards Balanced Learning for Object Detection[J]. arXiv preprint arXiv:1904.02701, 2019. 

[2]. Wang J, Chen K, Yang S, et al. Region proposal by guided anchoring[J]. arXiv preprint arXiv:1901.03278, 2019. 

[3]. Shrivastava A, Gupta A, Girshick R. Training region-based object detectors with online hard example mining[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 761-769. 

[4]. Wang X, Girshick R, Gupta A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7794-7803. 

[5]. Ross Girshick. Fast R-CNN. In IEEE Conference on Computer Vision and Pattern Recognition, 2015.

PaperWeekly
PaperWeekly

推荐、解读、讨论和报道人工智能前沿论文成果的学术平台。

理论R-CNN目标检测CVPR 2019
3
相关数据
权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

收敛技术

在数学,计算机科学和逻辑学中,收敛指的是不同的变换序列在有限的时间内达到一个结论(变换终止),并且得出的结论是独立于达到它的路径(他们是融合的)。 通俗来说,收敛通常是指在训练期间达到的一种状态,即经过一定次数的迭代之后,训练损失和验证损失在每次迭代中的变化都非常小或根本没有变化。也就是说,如果采用当前数据进行额外的训练将无法改进模型,模型即达到收敛状态。在深度学习中,损失值有时会在最终下降之前的多次迭代中保持不变或几乎保持不变,暂时形成收敛的假象。

SSD技术

一种计算机视觉模型。论文发表于 2015 年(Wei Liu et al.)

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

噪音技术

噪音是一个随机误差或观测变量的方差。在拟合数据的过程中,我们常见的公式$y=f(x)+\epsilon$中$\epsilon$即为噪音。 数据通常包含噪音,错误,例外或不确定性,或者不完整。 错误和噪音可能会混淆数据挖掘过程,从而导致错误模式的衍生。去除噪音是数据挖掘(data mining)或知识发现(Knowledge Discovery in Database,KDD)的一个重要步骤。

多任务学习技术

目标检测技术

一般目标检测(generic object detection)的目标是根据大量预定义的类别在自然图像中确定目标实例的位置,这是计算机视觉领域最基本和最有挑战性的问题之一。近些年兴起的深度学习技术是一种可从数据中直接学习特征表示的强大方法,并已经为一般目标检测领域带来了显著的突破性进展。

推荐文章
暂无评论
暂无评论~