林安安、钱天培编译

百闻不如一码!手把手教你用Python搭一个Transformer

与基于RNN的方法相比,Transformer 不需要循环,主要是由Attention 机制组成,因而可以充分利用python的高效线性代数函数库,大量节省训练时间。

可是,文摘菌却经常听到同学抱怨,Transformer学过就忘,总是不得要领。

怎么办?那就自己搭一个Transformer吧!

上图是谷歌提出的transformer 架构,其本质上是一个Encoder-Decoder的结构。把英文句子输入模型,模型会输出法文句子。

要搭建Transformer,我们必须要了解5个过程:

  • 词向量层

  • 位置编码

  • 创建Masks

  • 多头注意层(The Multi-Head Attention layer)

  • Feed Forward层

词向量

词向量是神经网络机器翻译(NMT)的标准训练方法,能够表达丰富的词义信息。

在pytorch里很容易实现词向量:

class Embedder(nn.Module): def __init__(self, vocab_size, d_model): super().__init__() self.embed = nn.Embedding(vocab_size, d_model) def forward(self, x):         return self.embed(x)

当每个单词进入后,代码就会查询和检索词向量。模型会把这些向量当作参数进行学习,并随着梯度下降的每次迭代而调整。

给单词赋予上下文语境:位置编程

模型理解一个句子有两个要素:一是单词的含义,二是单词在句中所处的位置。

每个单词的嵌入向量会学习单词的含义,所以我们需要输入一些信息,让神经网络知道单词在句中所处的位置。

Vasmari用下面的函数创建位置特异性常量来解决这类问题:

这个常量是一个2D矩阵。Pos代表了句子的顺序,i代表了嵌入向量所处的维度位置。在pos/i矩阵中的每一个值都可以通过上面的算式计算出来。

位置编码矩阵是一个常量,它的值可以用上面的算式计算出来。把常量嵌入矩阵,然后每个嵌入的单词会根据它所处的位置发生特定转变。

位置编辑器的代码如下所示:

class PositionalEncoder(nn.Module): def __init__(self, d_model, max_seq_len = 80): super().__init__() self.d_model = d_model # create constant 'pe' matrix with values dependant on # pos and i pe = torch.zeros(max_seq_len, d_model) for pos in range(max_seq_len): for i in range(0, d_model, 2): pe[pos, i] = \ math.sin(pos / (10000 ** ((2 * i)/d_model))) pe[pos, i + 1] = \ math.cos(pos / (10000 ** ((2 * (i + 1))/d_model))) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): # make embeddings relatively larger x = x * math.sqrt(self.d_model) #add constant to embedding seq_len = x.size(1) x = x + Variable(self.pe[:,:seq_len], \ requires_grad=False).cuda()         return x

以上模块允许我们向嵌入向量添加位置编码(positional encoding),为模型架构提供信息。

在给词向量添加位置编码之前,我们要扩大词向量的数值,目的是让位置编码相对较小。这意味着向词向量添加位置编码时,词向量的原始含义不会丢失。

创建Masks

Masks在transformer模型中起重要作用,主要包括两个方面:

在编码器和解码器中:当输入为padding,注意力会是0。

在解码器中:预测下一个单词,避免解码器偷偷看到后面的翻译内容。

输入端生成一个mask很简单:

batch = next(iter(train_iter)) input_seq = batch.English.transpose(0,1) input_pad = EN_TEXT.vocab.stoi['<pad>'] # creates mask with 0s wherever there is padding in the input input_msk = (input_seq != input_pad).unsqueeze(1)

同样的,Target_seq也可以生成一个mask,但是会额外增加一个步骤:

# create mask as before target_seq = batch.French.transpose(0,1) target_pad = FR_TEXT.vocab.stoi['<pad>'] target_msk = (target_seq != target_pad).unsqueeze(1) size = target_seq.size(1) # get seq_len for matrix nopeak_mask = np.triu(np.ones(1, size, size), k=1).astype('uint8') nopeak_mask = Variable(torch.from_numpy(nopeak_mask) == 0) target_msk = target_msk & nopeak_mask

目标语句(法语翻译内容)作为初始值输进解码器中。解码器通过编码器的全部输出,以及目前已翻译的单词来预测下一个单词。

因此,我们需要防止解码器偷看到还没预测的单词。为了达成这个目的,我们用到了nopeak_mask函数:

当在注意力函数中应用mask,每一次预测都只会用到这个词之前的句子。

多头注意力

一旦我们有了词向量(带有位置编码)和masks,我们就可以开始构建模型层了。

下图是多头注意力的结构:

多头注意力层,每一个输入都会分成多头(multiple heads),从而让网络同时“注意”每一个词向量的不同部分。

V,K和Q分别代表“key”、“value”和“query”,这些是注意力函数的相关术语,但我不觉得解释这些术语会对理解这个模型有任何帮助。

在编码器中,V、K和G将作为词向量(加上位置编码)的相同拷贝。它们具有维度Batch_size * seq_len * d_model.

在多头注意力中,我们把嵌入向量分进N个头中,它们就有了维度(batch_size * N * seq_len * (d_model / N).

我们定义最终维度 (d_model / N )为d_k。

让我们来看看解码器模块的代码:

class MultiHeadAttention(nn.Module): def __init__(self, heads, d_model, dropout = 0.1): super().__init__() self.d_model = d_model self.d_k = d_model // heads self.h = heads self.q_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) self.out = nn.Linear(d_model, d_model)

def forward(self, q, k, v, mask=None): bs = q.size(0) # perform linear operation and split into h heads k = self.k_linear(k).view(bs, -1, self.h, self.d_k) q = self.q_linear(q).view(bs, -1, self.h, self.d_k) v = self.v_linear(v).view(bs, -1, self.h, self.d_k) # transpose to get dimensions bs * h * sl * d_model k = k.transpose(1,2) q = q.transpose(1,2) v = v.transpose(1,2) # calculate attention using function we will define next scores = attention(q, k, v, self.d_k, mask, self.dropout) # concatenate heads and put through final linear layer concat = scores.transpose(1,2).contiguous()\ .view(bs, -1, self.d_model) output = self.out(concat)         return output

计算注意力

计算注意力的公式

图解公式

这是另一个我们需要了解的公式,上面这幅图很好地解释了这个公式。

图中的每个箭头代表了公式的一部分。

首先,我们要用Q乘以K的转置函数(transpose),然后通过除以d_k的平方根来实现scaled函数。

方程中没有显示的一个步骤是masking。在执行Softmax之前,我们使用mask,减少输入填充(padding)的值。

另一个未显示的步骤是dropout,我们将在Softmax之后使用它。

最后一步是在目前为止的结果和V之间做点积(dot product)。

下面是注意力函数的代码:

def attention(q, k, v, d_k, mask=None, dropout=None): scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: mask = mask.unsqueeze(1) scores = scores.masked_fill(mask == 0, -1e9) scores = F.softmax(scores, dim=-1) if dropout is not None: scores = dropout(scores) output = torch.matmul(scores, v)     return output

前馈网络

好了,如果你现在已经理解以上部分,我们就进入最后一步!

这一层由两个线性运算组成,两层中夹有relu和dropout 运算。

class FeedForward(nn.Module):
    def __init__(self, d_model, d_ff=2048, dropout = 0.1):
        super().__init__()
        # We set d_ff as a default to 2048
        self.linear_1 = nn.Linear(d_model, d_ff)
        self.dropout = nn.Dropout(dropout)
        self.linear_2 = nn.Linear(d_ff, d_model)
    def forward(self, x):
        x = self.dropout(F.relu(self.linear_1(x)))
        x = self.linear_2(x)
        return x

最后一件事:归一化

在深度神经网络中,归一化是非常重要的。它可以防止层中值变化太多,这意味着模型训练速度更快,具有更好的泛化。


我们在编码器/解码器的每一层之间归一化我们的结果,所以在构建我们的模型之前,让我们先定义这个函数:

class Norm(nn.Module):
    def __init__(self, d_model, eps = 1e-6):
        super().__init__()
    
        self.size = d_model
        # create two learnable parameters to calibrate normalisation
        self.alpha = nn.Parameter(torch.ones(self.size))
        self.bias = nn.Parameter(torch.zeros(self.size))
        self.eps = eps
    def forward(self, x):
        norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) \
        / (x.std(dim=-1, keepdim=True) + self.eps) + self.bias
        return norm

把所有内容结合起来!

如果你已经清楚了上述相关细节,那么你就能理解Transformer模型啦。剩下的就是把一切都组装起来。

让我们再来看看整体架构,然后开始构建:

最后一个变量:如果你仔细看图,你可以看到编码器和解码器旁边有一个“Nx”。实际上,上图中的编码器和解码器分别表示编码器的一层和解码器的一层。N是层数的变量。比如,如果N=6,数据经过6个编码器层(如上所示的结构),然后将这些输出传给解码器,解码器也由6个重复的解码器层组成。

现在,我们将使用上面模型中所示的结构构建编码器层和解码器层模块。在我们构建编码器和解码器时,我们可以决定层的数量。

# build an encoder layer with one multi-head attention layer and one # feed-forward layer

class EncoderLayer(nn.Module):
    def __init__(self, d_model, heads, dropout = 0.1):
        super().__init__()
        self.norm_1 = Norm(d_model)
        self.norm_2 = Norm(d_model)
        self.attn = MultiHeadAttention(heads, d_model)
        self.ff = FeedForward(d_model)
        self.dropout_1 = nn.Dropout(dropout)
        self.dropout_2 = nn.Dropout(dropout)
        
    def forward(self, x, mask):
        x2 = self.norm_1(x)
        x = x + self.dropout_1(self.attn(x2,x2,x2,mask))
        x2 = self.norm_2(x)
        x = x + self.dropout_2(self.ff(x2))
        return x
    
# build a decoder layer with two multi-head attention layers and
# one feed-forward layer

class DecoderLayer(nn.Module):
    def __init__(self, d_model, heads, dropout=0.1):
        super().__init__()
        self.norm_1 = Norm(d_model)
        self.norm_2 = Norm(d_model)
        self.norm_3 = Norm(d_model)
        
        self.dropout_1 = nn.Dropout(dropout)
        self.dropout_2 = nn.Dropout(dropout)
        self.dropout_3 = nn.Dropout(dropout)
        
        self.attn_1 = MultiHeadAttention(heads, d_model)
        self.attn_2 = MultiHeadAttention(heads, d_model)
        self.ff = FeedForward(d_model).cuda()

def forward(self, x, e_outputs, src_mask, trg_mask):
        x2 = self.norm_1(x)
        x = x + self.dropout_1(self.attn_1(x2, x2, x2, trg_mask))
        x2 = self.norm_2(x)
        x = x + self.dropout_2(self.attn_2(x2, e_outputs, e_outputs,
        src_mask))
        x2 = self.norm_3(x)
        x = x + self.dropout_3(self.ff(x2))
        return x

# We can then build a convenient cloning function that can generate multiple layers:

def get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])

我们现在可以构建编码器和解码器了:

class Encoder(nn.Module):
    def __init__(self, vocab_size, d_model, N, heads):
        super().__init__()
        self.N = N
        self.embed = Embedder(vocab_size, d_model)
        self.pe = PositionalEncoder(d_model)
        self.layers = get_clones(EncoderLayer(d_model, heads), N)
        self.norm = Norm(d_model)
    def forward(self, src, mask):
        x = self.embed(src)
        x = self.pe(x)
        for i in range(N):
            x = self.layers[i](x, mask)
        return self.norm(x)
    
class Decoder(nn.Module):
    def __init__(self, vocab_size, d_model, N, heads):
        super().__init__()
        self.N = N
        self.embed = Embedder(vocab_size, d_model)
        self.pe = PositionalEncoder(d_model)
        self.layers = get_clones(DecoderLayer(d_model, heads), N)
        self.norm = Norm(d_model)
    def forward(self, trg, e_outputs, src_mask, trg_mask):
        x = self.embed(trg)
        x = self.pe(x)
        for i in range(self.N):
            x = self.layers[i](x, e_outputs, src_mask, trg_mask)
        return self.norm(x)

Transformer模型构建完毕!

class Transformer(nn.Module):
    def __init__(self, src_vocab, trg_vocab, d_model, N, heads):
        super().__init__()
        self.encoder = Encoder(src_vocab, d_model, N, heads)
        self.decoder = Decoder(trg_vocab, d_model, N, heads)
        self.out = nn.Linear(d_model, trg_vocab)
    def forward(self, src, trg, src_mask, trg_mask):
        e_outputs = self.encoder(src, src_mask)
        d_output = self.decoder(trg, e_outputs, src_mask, trg_mask)
        output = self.out(d_output)
        return output

# we don't perform softmax on the output as this will be handled
# automatically by our loss function

训练模型

构建完transformer,接下来要做的是用EuroParl数据集进行训练。编码部分非常简单,但是要等两天,模型才会开始converge!

让我们先来定义一些参数

d_model = 512
heads = 8
N = 6
src_vocab = len(EN_TEXT.vocab)
trg_vocab = len(FR_TEXT.vocab)

model = Transformer(src_vocab, trg_vocab, d_model, N, heads)

for p in model.parameters():
    if p.dim() > 1:
        nn.init.xavier_uniform_(p)

# this code is very important! It initialises the parameters with a
# range of values that stops the signal fading or getting too big.
# See this blog for a mathematical explanation.

optim = torch.optim.Adam(model.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9)

现在,我们可以开始训练了:

def train_model(epochs, print_every=100):
    model.train()

    start = time.time()
    temp = start
    
    total_loss = 0
    
    for epoch in range(epochs):
       
        for i, batch in enumerate(train_iter):

            src = batch.English.transpose(0,1)
            trg = batch.French.transpose(0,1)

            # the French sentence we input has all words except
            # the last, as it is using each word to predict the next
            
            trg_input = trg[:, :-1]
            
            # the words we are trying to predict
            
            targets = trg[:, 1:].contiguous().view(-1)
            
            # create function to make masks using mask code above
            
            src_mask, trg_mask = create_masks(src, trg_input)
            
            preds = model(src, trg_input, src_mask, trg_mask)
            
            optim.zero_grad()
            
            loss = F.cross_entropy(preds.view(-1, preds.size(-1)),
            results, ignore_index=target_pad)

            loss.backward()
            optim.step()
            
            total_loss += loss.data[0]
            if (i + 1) % print_every == 0:
                loss_avg = total_loss / print_every
                print("time = %dm, epoch %d, iter = %d, loss = %.3f,
                %ds per %d iters" % ((time.time() - start) // 60,
                epoch + 1, i + 1, loss_avg, time.time() - temp,
                print_every))
                total_loss = 0
                temp = time.time()


示例训练输出:经过几天的训练后,模型的损失函数收敛到了大约1.3。

测试模型

我们可以使用下面的函数来翻译句子。我们可以直接输入句子,或者输入自定义字符串。

翻译器通过运行一个循环来工作。我们对英语句子进行编码。把<sos> token输进解码器,编码器输出。然后,解码器对第一个单词进行预测,使用<sos> token将其加进解码器的输入。接着,重新运行循环,获取下一个单词预测,将其加入解码器的输入,直到<sos> token完成翻译。

def translate(model, src, max_len = 80, custom_string=False):

    model.eval()

if custom_sentence == True:
        src = tokenize_en(src)
        sentence=\
        Variable(torch.LongTensor([[EN_TEXT.vocab.stoi[tok] for tok
        in sentence]])).cuda()

src_mask = (src != input_pad).unsqueeze(-2)
    e_outputs = model.encoder(src, src_mask)
    
    outputs = torch.zeros(max_len).type_as(src.data)
    outputs[0] = torch.LongTensor([FR_TEXT.vocab.stoi['<sos>']])

for i in range(1, max_len):
            
        trg_mask = np.triu(np.ones((1, i, i),
        k=1).astype('uint8')
        trg_mask= Variable(torch.from_numpy(trg_mask) == 0).cuda()
        
        out = model.out(model.decoder(outputs[:i].unsqueeze(0),
        e_outputs, src_mask, trg_mask))
        out = F.softmax(out, dim=-1)
        val, ix = out[:, -1].data.topk(1)
        
        outputs[i] = ix[0][0]
        if ix[0][0] == FR_TEXT.vocab.stoi['<eos>']:
            break

return ' '.join(
    [FR_TEXT.vocab.itos[ix] for ix in outputs[:i]]
    )

Transformer模型的构建过程大致就是这样。想要获取完整代码,可以进入下面这个Github页面:

https://github.com/SamLynnEvans/Transformer

相关报道:

https://towardsdatascience.com/how-to-code-the-transformer-in-pytorch-24db27c8f9ec

大数据文摘
大数据文摘

秉承“普及数据思维,传播数据文化,助⼒产业发展”的企业⽂化,我们专注于数据领域的资讯、案例、技术,形成了“媒体+教育+⼈才服务”的良性⽣态,致⼒于打造精准数据科学社区。

工程注意力机制RNNTransformerPython
5
相关数据
Dropout技术

神经网络训练中防止过拟合的一种技术

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

收敛技术

在数学,计算机科学和逻辑学中,收敛指的是不同的变换序列在有限的时间内达到一个结论(变换终止),并且得出的结论是独立于达到它的路径(他们是融合的)。 通俗来说,收敛通常是指在训练期间达到的一种状态,即经过一定次数的迭代之后,训练损失和验证损失在每次迭代中的变化都非常小或根本没有变化。也就是说,如果采用当前数据进行额外的训练将无法改进模型,模型即达到收敛状态。在深度学习中,损失值有时会在最终下降之前的多次迭代中保持不变或几乎保持不变,暂时形成收敛的假象。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

机器翻译技术

机器翻译(MT)是利用机器的力量「自动将一种自然语言(源语言)的文本翻译成另一种语言(目标语言)」。机器翻译方法通常可分成三大类:基于规则的机器翻译(RBMT)、统计机器翻译(SMT)和神经机器翻译(NMT)。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

梯度下降技术

梯度下降是用于查找函数最小值的一阶迭代优化算法。 要使用梯度下降找到函数的局部最小值,可以采用与当前点的函数梯度(或近似梯度)的负值成比例的步骤。 如果采取的步骤与梯度的正值成比例,则接近该函数的局部最大值,被称为梯度上升。

查询技术

一般来说,查询是询问的一种形式。它在不同的学科里涵义有所不同。在信息检索领域,查询指的是数据库和信息系统对信息检索的精确要求

线性代数技术

线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

推荐文章
暂无评论
暂无评论~