参与GeekAI Chita

想让pandas运行更快吗?那就用Modin吧

Pandas 是数据科学领域流行的程序库,能够提供高性能、易于使用的数据结构和数据分析工具。但是处理规模大小不同的数据使,用户还得求助于不同的工具,实在有点麻烦。而 Modin 能够将 pandas 的运行速度提高好几倍,而无需切换 API 来适应不同的数据规模。

「通过更改一行代码扩展你的 pandas 工作流。」

Pandas数据科学领域的工作者都熟知的程序库。它提供高性能、易于使用的数据结构和数据分析工具。但是,当处理过于庞大的数据时,单个内核上运行的 Pandas 就会变得力不从心,人们不得不求助于不同的分布式系统来提高性能。然而,为了提高性能而做的这种权衡会带来陡峭的学习曲线

本质上,用户只是想让 Pandas 运行得更快,而不是为了特定的硬件设置而优化其工作流。这意味着人们希望在处理 10KB 的数据集时,可以使用与处理 10TB 数据集时相同的 Pandas 脚本。Modin 提供了一个优化 Pandas 的解决方案,这样数据科学家就可以把时间花在从数据中提取价值上,而不是花在提取数据的工具上。

Modin

Modin 是加州大学伯克利分校 RISELab 的一个早期项目,旨在促进分布式计算数据科学领域的应用。它是一个多进程的数据帧(Dataframe)库,具有与 Pandas 相同的应用程序接口(API),使用户可以加速他们的 Pandas 工作流。

在一台 8 核的机器上,用户只需要修改一行代码,Modin 就能将 Pandas 查询任务加速 4 倍。

该系统是为希望程序运行得更快、伸缩性更好,而无需进行重大代码更改的 Pandas 用户设计的。这项工作的最终目标是能够在云环境中使用 Pandas。

安装

Modin 是完全开源的,可以通过下面的 GitHub 链接获得:

https://github.com/modin-project/modin

我们可以使用如下所示的 PyPi 指令来安装 Modin:

pip install modin

在 Windows 环境下,Ray 是安装 Modin 所需的依赖之一。Windows 本身并不支持 Ray,所以为了安装它,用户需要使用 WSL(适用 Linux 的 Windows 子系统)。

Modin 如何加速数据处理过程

在笔记本上

在具有 4 个 CPU 内核的现代笔记本上处理适用于该机器的数据帧时,Pandas 仅仅使用了 1 个 CPU 内核,而 Modin 则能够使用全部 4 个内核。

Pandas 和 Modin 对 CPU 内核的使用情况

从本质上讲,Modin 所做的只是增加了 CPU 所有内核的利用率,从而提供了更好的性能。

在大型机器上

在大型机器上,Modin 的作用就变得更加明显了。假设我们有一台服务器或一台非常强大的机器,Pandas 仍然只会利用一个内核,而 Modin 会使用所有的内核。下图显示了在一台拥有 144 内核的计算机上通过 Pandas 和 Modin 使用「read_csv」函数的性能对比情况:

Pandas 的运行时间会随着数据量的变化而线性增长,因为它仅仅使用 1 个内核。而从上图中可能很难看到绿色条形图的增长,因为 Modin 的运行时间实在太短了。

通常,Modin 使用「read_csv」函数读取 2G 数据需要 2 秒,而 读取 18G 数据大约需要不到 18 秒。

架构

接下来,本文将解析 Modin 的架构。

数据帧分区

Modin 对数据帧的分区模式是沿着列和行同时进行划分的,因为这样为 Modins 在支持的列数和行数上都提供了灵活性和可伸缩性。

系统架构

Modin 被分为不同的层:

  • Pandas API 在最顶层暴露给用户。

  • 下一层为查询编译器,它接收来自 Pandas API 层的查询并执行某些优化。

  • 最后一层为分区管理器(Partition Manager),负责数据布局并对发送到每个分区的任务进行重组、分区和序列化。

modin 的一般架构

在 Modin 中实现 Pandas API

pandas 有大量的 API,这可能也是它应用如此广泛的原因之一。

pandas API

由于 Pandas 具有这么多种操作,Modin 采用了一种数据驱动的方法。也就是说 Modin 的创造者找出了人们最常用的 Pandas 操作。他们研究了 Kaggle 平台上的 Pandas 使用数据,对上面所有的 notebook 和脚本进行了分析,最终总结出最受欢迎的 Pandas 方法如下:

「pd.read_CSV」是目前最常用的 Pandas 方法,其次是「pd.Dataframe」方法。因此,在 Modin 中,设计者们开始实现一些 Pandas 操作,并按照它们受欢迎程度从高到低的顺序进行优化:

  • 目前,Modin 支持大约 71% 的 Pandas API。

  • 根据研究,这代表了 93% 的使用场景。

Ray

Modin 利用 Ray 以毫不费力的方式加速 Pandas 的 notebook、脚本和程序库。Ray 是一个针对大规模机器学习强化学习应用的高性能分布式执行框架。同样的代码可以在单台机器上运行以实现高效的多进程,也可以在集群上用于大型计算。你可以通过下面的 GitHub 链接获取 Ray:http://github.com/ray-project/ray。

使用方法

导入

Modin 封装了 Pandas,并透明地分发数据和计算任务,它通过修改一行代码就加速了 Pandas 的工作流。用户可以继续使用以前的 Pandas notebook,同时体验 Modin 带来的大幅加速,甚至在一台机器上。用户需要做的只是修改导入程序包的声明,引入「modin.pandas」而不是「pandas」。

import numpy as np
import modin.pandas as pd

我们将使用 Numpy 构建一个由随机整数组成的简单数据集。请注意,我们并不需要在这里指定分区。

data = np.random.randint(0,100,size = (2**16, 2**4))
df = pd.DataFrame(data)
df = df.add_prefix("Col:")

当我们将数据的类型打印在屏幕上时,会显示出「Modin 数据帧」。

type(df)
modin.pandas.dataframe.DataFrame

如果我们使用「head」命令打印出前五行数据,它会像 Pandas 一样显示出 HTML 表单。

df.head()

对比实验

Modin 会管理数据分区和重组,从而使用户能够将注意力集中于从数据中提取出价值。下面的代码是在一台 2013 年的拥有 4 个 CPU 内核和 32 GB RAM 内存的 iMac 机器上运行的。

pd.read_csv

「read_csv」是目前为止最常用的 Pandas 操作。接下来,本文将对分别在 Pandas 和 Modin 环境下使用「read_csv」函数的性能进行一个简单的对比。

  • pandas

%%time
import pandas 
pandas_csv_data = pandas.read_csv("../800MB.csv")
-----------------------------------------------------------------
CPU times: user 26.3 s, sys: 3.14 s, total: 29.4s
Wall time: 29.5 s
  • Modin

%%time
modin_csv_data = pd.read_csv("../750MB.csv")
-----------------------------------------------------------------
CPU times: user 76.7 ms, sys: 5.08 ms, total: 81.8 ms
Wall time: 7.6 s

通过使用 Modin,只需要修改导入声明就可以在一台 4 核机器上以普通 Pandas 4 倍的速度执行「read_csv」操作。

df.groupby

Pandas 的「groupby」聚合函数底层编写得非常好,运行速度非常快。但是即使如此,Modin 的性能也比 Pandas 要好。

  • Pandas

%%time
import pandas
_ = pandas_csv_data.groupby(by=pandas_csv_data.col_1).sum()
-----------------------------------------------------------------
CPU times: user 5.98 s, sys: 1.77 s, total: 7.75 s
Wall time: 7.74 s
  • modin

%%time
results = modin_csv_data.groupby(by=modin_csv_data.col_1).sum()
-----------------------------------------------------------------
CPU times: user 3.18 s, sys: 42.2 ms, total: 3.23 s
Wall time: 7.3 s

Pandas 实现的默认设置

如果想要使用尚未实现或优化的 Pandas API,实际上可以使用默认的 Pandas API。这使得该系统可以用于使用 Modin 中尚未实现操作的 notebook 中(尽管由于即将使用 Pandas API,性能会有所下降)。当使用默认的 Pandas API 时,你将看到一个警告:

dot_df = df.dot(df.T)

当计算完成后,该操作会返回一个分布式的 Modin 数据帧。

type(dot_df)
-----------------
modin.pandas.dataframe.DataFrame

结语

Modin 项目仍处于早期阶段,但对 Pandas 来说是一个非常有发展前景的补充。Modin 为用户处理所有的数据分区和重组任务,这样我们就可以集中精力处理工作流。Modin 的基本目标是让用户能够在小数据和大数据上使用相同的工具,而不用考虑改变 API 来适应不同的数据规模。

原文链接:https://towardsdatascience.com/get-faster-pandas-with-modin-even-on-your-laptops-b527a2eeda74

工程pandas
93
相关数据
数据分析技术

数据分析是一类统计方法,其主要特点是多维性和描述性。有些几何方法有助于揭示不同的数据之间存在的关系,并绘制出统计信息图,以更简洁的解释这些数据中包含的主要信息。其他一些用于收集数据,以便弄清哪些是同质的,从而更好地了解数据。 数据分析可以处理大量数据,并确定这些数据最有用的部分。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

学习曲线技术

在机器学习领域,学习曲线通常是表现学习准确率随着训练次数/时长/数据量的增长而变化的曲线

数据科学技术

数据科学,又称资料科学,是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。数据科学通过运用各种相关的数据来帮助非专业人士理解问题。

大数据技术技术

大数据,又称为巨量资料,指的是传统数据处理应用软件不足以处理它们的大或复杂的数据集的术语。

查询技术

一般来说,查询是询问的一种形式。它在不同的学科里涵义有所不同。在信息检索领域,查询指的是数据库和信息系统对信息检索的精确要求

分布式计算技术技术

在计算机科学中,分布式计算,又译为分散式運算。这个研究领域,主要研究分布式系统如何进行计算。分布式系统是一组电脑,通过网络相互链接传递消息与通信后并协调它们的行为而形成的系统。组件之间彼此进行交互以实现一个共同的目标。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

加州大学伯克利分校机构

加利福尼亚大学伯克利分校,简称加州大学伯克利分校,又常被译为加利福尼亚大学伯克莱分校,位于美国加利福尼亚州旧金山湾区伯克利市,是一所世界著名的公立研究型大学。其许多科系位于全球大学排行前十名,是世界上最负盛名的大学之一,常被誉为美国乃至世界最顶尖的公立大学。

https://www.berkeley.edu/
推荐文章
电子科技大学・计算机技术・硕士
好用,支持
可以,牛逼,下载来用一波!
KNJK・Data Mining
没有人测试过么?我试了一个2G的数据,除了read_csv的情况下,其他均不如pandas原生的接口,且速度慢了几百倍。环境是一台14核 50G的服务器。