Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

Augustus Odena作者

关于GAN的灵魂七问

关于生成对抗网络的七个开放性问题,个个都是灵魂追问。

生成对抗网络在过去一年仍是研究重点,我们不仅看到可以生成高分辨率(1024×1024)图像的模型,还可以看到那些以假乱真的生成图像。此外,我们还很兴奋能看到一些新的生成模型,它们能生成与 GAN 相媲美的图像,其主要代表就是流模型 Glow。

DeepMind 提出的 BigGAN,到英伟达的 Style-based Generator,它们生成的图像质量都令人惊叹。尽管还有很多问题没有解决,但图像生成已经能骗过一般人类了。不信的话,你可以试试区分生成的图像与真实图像。

看了上面 Style-based Generator 的生成效果,很明显感觉生成对抗网络在过去 2 年中已经取得了显著的进展。其实,从 16 年到 18 年图像合成的质量越来越高,看论文的速度都快赶不上 GAN 的发展了:

但是在另一些方面,GAN 的提升并不是那么显著。例如,关于如何评估 GAN 的效果,现在仍有很多分歧。因为目前图像合成基准已经非常多了,所以反思子领域的研究目标显得更有意义。

在这篇文章中,谷歌大脑团队的 Augustus Odena 就针对 GAN 的七大开放性问题作出了介绍。

  • 问题 1:如何在 GAN 和其它生成模型之间进行挑选?

  • 问题 2:GAN 能建模哪些分布?

  • 问题 3:除了图像合成外,GAN 还能用于哪些地方?

  • 问题 4:GAN 的全局收敛性如何?训练动态过程又是怎样的?

  • 问题 5:我们该如何评估 GAN 的好坏,什么时候又该使用 GAN 这种生成模型

  • 问题 6:如何扩展训练 GAN 的批量大小?

  • 问题 7:GAN 和对抗样本之间有什么关系?

Augustus 对每一个问题都做了很详细的讨论,包括问题背景、问题内容以及如何解决等等。这篇文章发布在 Distill 上,机器之心简要对六大问题做了介绍,更详细的内容与相关引用文献可阅读原文。

谷歌大脑和其他很多研究者都在致力于解决这些 GAN 的开放性研究问题。这篇文章也引用了近来非常多的生成对抗网络研究,因此并不能面面俱到地描述细节,所以读者有一定的基础、对这些问题有一定的直观了解就最好了。

专业用户独享

本文为机器之心深度精选内容,专业认证后即可阅读全文
开启专业认证
理论GANDistill
12
相关数据
DeepMind机构

DeepMind是一家英国的人工智能公司。公司创建于2010年,最初名称是DeepMind科技(DeepMind Technologies Limited),在2014年被谷歌收购。在2010年由杰米斯·哈萨比斯,谢恩·列格和穆斯塔法·苏莱曼成立创业公司。继AlphaGo之后,Google DeepMind首席执行官杰米斯·哈萨比斯表示将研究用人工智能与人类玩其他游戏,例如即时战略游戏《星际争霸II》(StarCraft II)。深度AI如果能直接使用在其他各种不同领域,除了未来能玩不同的游戏外,例如自动驾驶、投资顾问、音乐评论、甚至司法判决等等目前需要人脑才能处理的工作,基本上也可以直接使用相同的神经网上去学而习得与人类相同的思考力。

https://deepmind.com/
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

收敛技术

在数学,计算机科学和逻辑学中,收敛指的是不同的变换序列在有限的时间内达到一个结论(变换终止),并且得出的结论是独立于达到它的路径(他们是融合的)。 通俗来说,收敛通常是指在训练期间达到的一种状态,即经过一定次数的迭代之后,训练损失和验证损失在每次迭代中的变化都非常小或根本没有变化。也就是说,如果采用当前数据进行额外的训练将无法改进模型,模型即达到收敛状态。在深度学习中,损失值有时会在最终下降之前的多次迭代中保持不变或几乎保持不变,暂时形成收敛的假象。

先验知识技术

先验(apriori ;也译作 先天)在拉丁文中指“来自先前的东西”,或稍稍引申指“在经验之前”。近代西方传统中,认为先验指无需经验或先于经验获得的知识。先验知识不依赖于经验,比如,数学式子2+2=4;恒真命题“所有的单身汉一定没有结婚”;以及来自纯粹理性的推断“本体论证明”

分类问题技术

分类问题是数据挖掘处理的一个重要组成部分,在机器学习领域,分类问题通常被认为属于监督式学习(supervised learning),也就是说,分类问题的目标是根据已知样本的某些特征,判断一个新的样本属于哪种已知的样本类。根据类别的数量还可以进一步将分类问题划分为二元分类(binary classification)和多元分类(multiclass classification)。

对抗训练技术

对抗训练涉及两个模型的联合训练:一个模型是生成器,学习生成假样本,目标是骗过另一个模型;这另一个模型是判别器,通过对比真实数据学习判别生成器生成样本的真伪,目标是不要被骗。一般而言,两者的目标函数是相反的。

图像生成技术

图像生成(合成)是从现有数据集生成新图像的任务。

对抗样本技术

对抗样本是一类被设计来混淆机器学习器的样本,它们看上去与真实样本的几乎相同(无法用肉眼分辨),但其中噪声的加入却会导致机器学习模型做出错误的分类判断。

生成模型技术

在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下。 它给观测值和标注数据序列指定一个联合概率分布。 在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。

生成对抗网络技术

生成对抗网络是一种无监督学习方法,是一种通过用对抗网络来训练生成模型的架构。它由两个网络组成:用来拟合数据分布的生成网络G,和用来判断输入是否“真实”的判别网络D。在训练过程中,生成网络-G通过接受一个随机的噪声来尽量模仿训练集中的真实图片去“欺骗”D,而D则尽可能的分辨真实数据和生成网络的输出,从而形成两个网络的博弈过程。理想的情况下,博弈的结果会得到一个可以“以假乱真”的生成模型。

自回归模型技术

自回归模型,是统计上一种处理时间序列的方法,自回归模型被广泛运用在经济学、资讯学、自然现象的预测上。

图像分类技术

图像分类,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

图像修复技术

推荐文章
暂无评论
暂无评论~