赵赛坡作者钛媒体来源

人工智能如何定义下一代芯片?

某种意义上说,过去 50 年半导体行业的发展成为人类计算革命的燃料来源。

从概念上看,半导体又被理解为芯片,是一种高度小型化的电子产品,它可以非常快速地完成大量数学运算,利用这种计算可以在现实物理世界里完成目标。

简而言之,芯片是为我们的电子设备的大脑。它们帮助计算机和其他机器评估替代品,为电话、计算机、汽车、飞机、互联网提供计算能力。

半导体是在硅晶片上制造的非常复杂的物体。 这些晶圆的制造非常昂贵,前期投资需要数十亿美元。人类社会过去 60 多年的伟大技术奇迹之一,就是不断缩小芯片尺寸并不断提升计算性能,也就是我们常说的「摩尔定律」。

在这个行业,能够生产制造半导体的公司屈指可数,而且由于技术复杂,导致建造半导体工厂的成本直线上升,这也让半导体行业形成独特的商业模型,在整个链条上只有两类公司:一类是芯片设计公司,如英特尔,另一类则是芯片设计公司和芯片代工公司,或者晶圆代工公司,下图是 2018 年上半年全球十大代工厂。

不管摩尔定律是否失效,半导体行业依然在发展中,在通往 7 纳米制程的道路上,目前只有台积电、英特尔和三星,当然,英特尔目前也遭遇相当多的困难,这也意味着,从 PC 到互联网,再到智能手机,随着对计算性能要求的不断提升,整个半导体行业的集中化趋势,已经基本成定局。

从产业的角度去看,如今的半导体行业越来越像汽车行业,并购整合正在加速,尽管 2018 年博通收购高通高通收购恩智浦都宣告失败,但产业发展的趋势不可避免,只有足够的垄断才能形成更大的议价权,未来三到五年,新的并购整合还将继续。

这两年来,一股半导体行业的「反潮流」开始出现:自研芯片。

智能手机领域,苹果在 2008 年悄然收购了芯片制造商 P.A. Semi 公司,并在两年后推出自研的第一代芯片 A4 处理器,这款处理器很快成为 iPhone、iPad 的标配产品,随后,苹果又在 Apple Watch、Apple TV 等产品里加入自主研发的处理器。另外,根据著名苹果分析师郭明錤透露的消息,2020 年之后,苹果将在 Mac 系列电脑里集成自己的芯片。

而 Google,则一直在推进数据中心的芯片研发。截止到 2018 年 11 月,Google 已经推出了三代 Tensor Process Unit(以下简称为 TPU),这些产品瞄准的是日益强烈的机器学习需求,从而也增加了 Google 在云端服务上的特定能力。

上述现象与半导体行业刚起步时非常相似,当时,所有的公司都在内部研发、制造芯片,随着企业研发成本的上升,有的企业开始将芯片设计、生产分开,或者直接外包给第三方公司,这样的分工协作也大大降低了成本。

但现在,越来越多的公司成为加入到「反潮流」的大军里,苹果、Google 除外,亚马逊微软以及华为阿里巴巴,都在暗自进行芯片的研发。

人工智能,也正在给半导体行业带来新的变革机遇。

从最基本的角度去理解人工智能,或者准确说机器学习,它更像是一种高级的软件形态,这个软件上可以进行大量专业数学计算。以深度神经网络来说,它是一种非常复杂的「投票」算法,通过对各个变量的权重进行复杂的计算,来实现决策。

机器学习深度学习的过程,就是一次次的计算过程,如何才能提升计算速度呢?当然是让计算并行化,这种需求也和图像计算非常相似,尽管原理不一定相同,但事实也的确证明了,将图像计算的处理器 GPU 放在机器学习之中,效果非常好,由此也造就了过去四年英伟达的「奇迹」。

但行业内除了英伟达之外,没有人愿意看到只有 GPU 适合机器学习,从传统芯片企业英特尔到互联网巨头 Google、Facebook、亚马逊,都有着自己的考量。

而如果从 AI 芯片的功能层面来看,人工智能芯片主要有两个方面的需求:训练和推理。这两个需求相互联系,构成了人工智能芯片的完整流程。

先说训练,当海量被标注的数据被收集到数据中心,工程师们就要开始「训练」数据,简而言之,就是在海量的数据中寻找可用的模型。

而推理,则是将模型反应出结果呈现出来,我们常常说所谓「机器决策」,也就是说,当用户输入一个不太明确的指令后,机器能够给出一个看似合理的答案。

上面的两段话有点复杂,不妨来看两个案例,如果你在手机上用过 Google Photo,你会发现这个产品不仅会让你照片备份起来,还会提供一系列有趣的功能,如下图所示,你可以看到「往年今日」的推荐、以及可以直接用自然语言搜索图片。

要实现 Google Photo 的上述功能,你需要将数据,也就是照片先上传到 Google 服务器,经过一段时间之后才能看到上图的推荐,这是因为,Google 的数据训练都是在云端,而推理的结果则需要网络的支持才能呈现出来,换句话说,你需要联网才能使用。

苹果的做法则完全不同。基于苹果自主研发的芯片以及神经网络处理引擎,目前 iPhone、iPad 都可以实现本地的 AI 计算,同样是照片数据的训练和推理,苹果将所有的过程都放在本地设备,如下图所示,你会看到也是类似的照片推荐、自然语言搜索等功能。

事实上,我们很难直接判断哪种方式跟好,只能说,每一种方式都有着一定的使用范围,比如在自动驾驶汽车上,人工智能芯片的处理过程必须放在本地,只有这样,才能避免与云端交换数据的延时,也能避免车祸的发生。

从上述角度出发,AI 芯片领域有三类大市场:数据中心训练、数据中心推理、设备/边缘推理。

如果说过去的芯片行业像极了汽车行业,导致没有后来者、创业者的机会,那么在 AI 芯片开创的三个领域里,却提供了足够多的想象空间,也让资本市场看到了可能性,下图还仅仅是截止到 2017 年的数据。

如果从 AI 芯片的三个大市场的角度去看未来的机会。

首先,数据中心 AI 芯片市场的竞争会非常激烈,一方面,CPU 不会轻易退出市场,另一方面,数据中心所有者都是全球云计算巨头,包括亚马逊、Google、微软阿里巴巴,他们对于 AI 芯片的需求当然非常强烈,但正如上文所言,他们正在自主研发自己的芯片,虽然这不代表这些公司不会采购第三方芯片,却也展现出这个市场的特殊性。

其次,设备推理市场虽然规模巨大,但却有着非常细分的领域,比如设备形态不同,导致应用场景、能耗的区别非常大,手机的推理能力与汽车显然是不同的,这也导致这个市场最终会非常庞杂,当然,巨头、创业公司都有机会在这个领域获得一席之地。

当然,与传统半导体行业类似,AI 芯片最终的走向依然会是寡头化,。

半导体行业观察
半导体行业观察

最有深度的半导体新媒体,实时、专业、原创、深度,30万半导体精英关注!专注观察全球半导体最新资讯、技术前沿、发展趋势。

产业AI芯片
相关数据
亚马逊机构

亚马逊(英语:Amazon.com Inc.,NASDAQ:AMZN)是一家总部位于美国西雅图的跨国电子商务企业,业务起始于线上书店,不久之后商品走向多元化。目前是全球最大的互联网线上零售商之一,也是美国《财富》杂志2016年评选的全球最大500家公司的排行榜中的第44名。

https://www.amazon.com/
相关技术
英特尔机构

英特尔是计算创新领域的全球领先厂商,致力于拓展科技疆界,让最精彩体验成为可能。英特尔创始于1968年,已拥有近半个世纪产品创新和引领市场的经验。英特尔1971年推出了世界上第一个微处理器,后来又促进了计算机和互联网的革命,改变了整个世界的进程。如今,英特尔正转型成为一家数据公司,制定了清晰的数据战略,凭借云和数据中心、物联网、存储、FPGA以及5G构成的增长良性循环,提供独到价值,驱动日益发展的智能互联世界。英特尔专注于技术创新,同时也积极支持中国的自主创新,与产业伙伴携手推动智能互联的发展。基于明确的数据战略和智能互联全栈实力,英特尔瞄准人工智能、无人驾驶、5G、精准医疗、体育等关键领域,与中国深度合作。面向未来,英特尔致力于做中国高价值合作伙伴,在新科技、新经济、新消费三个方面,着力驱动产业协同创新,为实体经济增值,促进消费升级。

https://www.intel.com/content/www/us/en/company-overview/company-overview.html
相关技术
高通机构

高通公司(英语:Qualcomm,NASDAQ:QCOM)是一个位于美国加州圣地亚哥的无线电通信技术研发公司,由加州大学圣地亚哥分校教授厄文·马克·雅克布和安德鲁·维特比创建,于1985年成立。两人此前曾共同创建Linkabit。 高通公司是全球3G、4G与5G技术研发的领先企业,目前已经向全球多家制造商提供技术使用授权,涉及了世界上所有电信设备和消费电子设备的品牌。根据iSuppli的统计数据,高通在2007年度一季度首次一举成为全球最大的无线半导体供应商,并在此后继续保持这一领导地位。其骁龙移动智能处理器是业界领先的全合一、全系列移动处理器,具有高性能、低功耗、逼真的多媒体和全面的连接性。目前公司的产品和业务正在变革医疗、汽车、物联网、智能家居、智慧城市等多个领域。

华为机构

华为成立于1987年,是全球领先的ICT(信息与通信)基础设施和智能终端提供商。华为的主要业务分布在无线、网络、软件、服务器、云计算、人工智能与大数据、安全、智能终端等领域,发布了5G端到端解决方案、智简网络、软件平台、面向行业的云解决方案、EI企业智能平台、新一代FusionServer V5服务器、HUAWEI Mate等系列智能手机、麒麟系列AI芯片等产品。目前华为拥有18万员工,36所联合创新中心,14所研究院/所/室,业务遍及170多个国家和地区。

http://www.huawei.com/cn
微软机构

微软是美国一家跨国计算机科技公司,以研发、制造、授权和提供广泛的计算机软件服务为主。总部位于美国华盛顿州的雷德蒙德,最为著名和畅销的产品为Microsoft Windows操作系统和Microsoft Office办公室软件,以及Xbox的游戏业务。微软是美国《财富》杂志2015年评选的世界500强企业排行榜中的第95名。

https://www.microsoft.com/en-us/about
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

自动驾驶技术技术

从 20 世纪 80 年代首次成功演示以来(Dickmanns & Mysliwetz (1992); Dickmanns & Graefe (1988); Thorpe et al. (1988)),自动驾驶汽车领域已经取得了巨大进展。尽管有了这些进展,但在任意复杂环境中实现完全自动驾驶导航仍被认为还需要数十年的发展。原因有两个:首先,在复杂的动态环境中运行的自动驾驶系统需要人工智能归纳不可预测的情境,从而进行实时推论。第二,信息性决策需要准确的感知,目前大部分已有的计算机视觉系统有一定的错误率,这是自动驾驶导航所无法接受的。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

自动驾驶汽车技术

自动驾驶汽车,又称为无人驾驶汽车、电脑驾驶汽车或轮式移动机器人,是自动化载具的一种,具有传统汽车的运输能力。作为自动化载具,自动驾驶汽车不需要人为操作即能感测其环境及导航。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

云计算技术

云计算(英语:cloud computing),是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需求提供给计算机各种终端和其他设备。

摩尔定律技术

摩尔定律是由英特尔创始人之一戈登·摩尔提出来的。其内容为:积体电路上可容纳的电晶体数目,约每隔两年便会增加一倍;经常被引用的“18个月”,是由英特尔首席执行官大卫·豪斯所说:预计18个月会将芯片的性能提高一倍。

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

阿里巴巴机构

阿里巴巴网络技术有限公司(简称:阿里巴巴集团)是以曾担任英语教师的马云为首的18人于1999年在浙江杭州创立的公司。 阿里巴巴集团经营多项业务,另外也从关联公司的业务和服务中取得经营商业生态系统上的支援。业务和关联公司的业务包括:淘宝网、天猫、聚划算、全球速卖通、阿里巴巴国际交易市场、1688、阿里妈妈、阿里云、蚂蚁金服、菜鸟网络等。 2014年9月19日,阿里巴巴集团在纽约证券交易所正式挂牌上市,股票代码“BABA”,创始人和董事局主席为马云。 2018年7月19日,全球同步《财富》世界500强排行榜发布,阿里巴巴集团排名300位。2018年12月,阿里巴巴入围2018世界品牌500强。

https://www.alibabagroup.com/
推荐文章
暂无评论
暂无评论~